
Cooking RIA CRUD with Flex and BlazeDS

In today’s cooking class you’ll add to your cookbook a delicious recipe. It’s quick and won’t cost
you a dime. I’m sure you’ve been in one of these situations when you have unexpected guests
arriving in 20 minutes and need to make a good impression. Let’s do it.

Ingredients
1. Eclipse IDE for Java Developers: http://www.eclipse.org/downloads/

2. Adobe Flex Builder 3 plugin version: http://www.flex.org

3. Adobe BlazeDS 3.0:
http://opensource.adobe.com/wiki/display/blazeds/download+blazeds+3

4. Clear Data Builder 3.0 Beta plugin for Eclipse from Farata Systems:
http://www.myflex.org/beta/site.zip

5. Apache Tomcat 6.0 http://tomcat.apache.org/download-60.cgi

6. IBM DB2: http://www-306.ibm.com/software/data/db2/express/ .
If DB2 is not spicy enough for you, replace it with other seasonings like MySql Server, SQL
Server or Oracle.

Out of these ingredients only Flex Builder 3 is not free unless you are a student, faculty or are
willing to cook it with a 60-day trial version.

Time of cooking
After all ingredients are installed, creation of a basic CRUD should take you less than 10
minutes. If you prefer to start with watching the video of how this CRUD was cooked, you can
download the screen cast in avi (6MB) format.

Serves more than 10,000 people
With this tasty RIA CRUD recipe you can feed more than 10,000 people. Tomcat 6.0 uses a non-
blocking I/O, and apparently there are benchmarks showing that it can withstand as much as
16,000 concurrent connections (see
http://weblogs.java.net/blog/sdo/archive/2007/05/how_to_test_con.html).

Preparing the cooking table

1. Eclipse JEE installation is as simple as unzipping it to a folder on your hard disk. This recipe
requires JEE version of Eclipse because we’ll be using nice Web tools that come with it.

2. Installing of the plugin version of Flex Builder 3 is also easy, as long as you’ll be able to find it

http://www.eclipse.org/downloads/
http://www.flex.org/
http://opensource.adobe.com/wiki/display/blazeds/download+blazeds+3
http://www.myflex.org/beta/site.zip
http://tomcat.apache.org/download-60.cgi
http://www-306.ibm.com/software/data/db2/express/
http://www.myflex.org/demos/CDB_blazeds_db2.avi
http://weblogs.java.net/blog/sdo/archive/2007/05/how_to_test_con.html

online. Adobe is flirting with you girls, by hiding it behind the standalone Flex Builder distribution,
but savvy housewives can always find the exact ingredients they are looking for. Just follow the
link by the text “Have Eclipse already installed…” on Flex Builder download site.

3. Register at www.myflex.org and get the license to Clear Data Builder (CDB) - it’s free. The version
for Flex 2 was and still is on sale, but CDB 3.0 will be offered at no charge. Download the CDB 3
beta version at http://www.myflex.or/beta/site.zip.

Unzip it into any folder on your disk and install CDB plugin by selecting Eclipse menu Help |
Software Updates | Find and Install. Select the radio button “Search for new features to install”.
Press the button New Local Site, give it a name (i.e. Local CDB) and point at the directory where
you’ve unzipped the file site.zip.

Install CDB license in Eclipse by using the Menu Window | Preferences |Flex |My Flex | License
Management |Install License. The CDB license goes under the name daoflex, which was an open
source predecessor of CDB.

4. Download the binary edition of BlazeDS , which is a relatively small (4Mb) zip file. Just unzip it
into some folder, say in c:\blazeds like I did.

It goes without saying, that any respected chef has JDK 1.5 or later. Yes, we need JDK, not JRE for
today’s class . Use Eclipse menu Window | Preferences | Java | Installed JREs and point it to your JDK
installation directory, for example:

http://www.myflex.org/
http://www.myflex.or/beta/site.zip

5. Download Tomcat 6 - select Windows Service Installer from the Core Downloads section. Run
the install accepting all defaults.

6. The last preparation step is like DB2. Remember old days? Mainframe, Cobol, DB2… It’s 21st
century and IBM offers a free version of DB2 Express that works just fine on your PC. During the
installation you’ll need to pick a user name and the password. I’ve selected dba as a user id and sql
as a password.

If you prefer MySQL Server, I do not mind. But when other girls will be selecting the DB2 radio
button on CDB configuration screen, you pick My SQL. We’ll be using the Employees table that
comes with the sample DB2 database. You use whatever table you like. That’s all.

I’ve got a little surprise for you. Our today’s cooking class is video recorded, and you’ll be able to
watch it over and over again at your own pace.

Let’s start.

Directions

1. Start Eclipse JEE and create a new instance of the Tomcat 6 server. Right-click in the tab
Servers, select New, Tomcat 6, and then click on Finish.

2. Create a new Dynamic Web Project in Eclipse using the menus File | New | Other | Web |
Dynamic Web Project. Let’s name the project RIA CRUD. Specify the Target Runtime (we’ll
use Apache Tomcat 6.0) in the Dynamic Web Project configuration screen:

Press the button Next.

3. Select Clear Data Builder and Flex Web Project facets as shown below:

Press Next.

4. Leave the next screen the suggests RIA_CRUD as a context, WebContent as a content
directory and src as a directory for the Java code. Press the button Next.

5. Now you need to specify that we are going to use BlazeDS and where your blazeds.war is
located:

Press the button Next.

6. Finally, we need to specify that the application will be deployed under Tomcat, select and
configure the database connection . Select the database driver, name the connection pool,
and enter the URL of your database. By default, DB2 is running on port 5000 and the name
of the sample database is SAMPLE.

Do not forget to press the button Test Connection to ensure that there is no problems in that
department.

7. Press the button Finish, and the new Dynamic Web Project will be created:

8. Create a new abstract class Employee (right-click on Java Resources). Let’s enter
com.farata as the package name:

The code of the class Employee will look like this:

package com.farata;

public abstract class Employee {

}

9. It’s time for Clear Data Builder to chime in, but we need to prepare a method signature
annotated (we use doclets) with our SQL statement that will bring the data to our CRUD
application. We’ll need a couple of more lines of code to specify what’s the table to update
and what’s the primary key there. Since I did it a number of times, I’ll just show you how

the resulting class may look like:

package com.farata;
import java.util.List;

/**
* @daoflex:webservice pool=jdbc/db2_sample
*/
public abstract class Employee {
 /**
 * @daoflex:sql
 * pool=jdbc/db2_sample
 * sql=::select * from yf.EMPLOYEE
 * ::
 * transferType=EmployeeDTO[]
 * keyColumns=EMPNO
 * updateTable=yf.EMPLOYEE
 */
 public abstract List getEmployees();
}

Double colons are used to specify the start and end of the SQL statement. But since it’s your first
exposure to CDB, right-click inside the curlies in the class Employee, and you’ll see a Clear Data
Builder’s menu.

Select Inject SQL sync template if you need a CRUD application or Inject SQL fill template if you are
planning to create a read-only application. CDB will insert commented code that will help you to
write similar code on your own.

Here’s a screenshot of the Control Center of the DB2 SAMPLE database. Please note, that on my PC
the table EMPLOYEE was created in the schema YF, which happened to be my user id on my
laptop.

Since we configure the database connection pool using dba as a user id, we’d need to fully qualify
the table name: select * from yf.employee. Accordingly, the name of the table to update
should be also fully qualified.

To eliminate this annoyance, you can use DB2 Control Center and create an alias Employee in the
dba schema to point at the table Employee in the schema yf:

Now we can go to the Eclipse menu Project an perform Clean , which will start the CDB code
generation and build process. The Clean process invokes the ANT build script located under the
folder daoflex.build. The only proper outcome of this process is BUILD SUCCESSFUL. If you do
not see this message, most likely you’ve done something wrong or in the wrong order.

After this build, the Java DTO and data access classes where generated and deployed in our
Tomcat servlet container.

To see the Java code generated by CDB, switch to the Flex Builder perspective, click on a little
triangle in the Flex Navigator view, select the Filters option and uncheck the “gen” checkbox as
shown below:

The generated Java code is located under the folder .daoflex-temp\gen. Re-run the Ant script to
regenerate the code. If you do not see this folder immediately, refresh your Eclipse project by
pressing F5.

Technically, you do not need keep these source files as they are going to be jar’ed by CDB build
process and deployed in the lib directory of your servlet container under WEB-INF\lib in the files
daoflex-runtime.jar, services-generated.jar and services-original.jar.

On the client side, CDB has generated the EmployeeDTO.as, an ActionScript peer of the
generated EmployeeDTO.java. It’s shown on the next screen shot.

Clear Data Builder also generates a number of test Flex applications, which can be used as the
front end of our RIA CRUD application.

In a minute, we’ll use the one of the generated Flex applications called
Employee_getEmployees_GridTest.mxml.

10. Add your project to Tomcat server: right click on your Tomcat Server, select Add or
Remove projects, and add the project RIA CRUD to the Configured projects panel.

11. Start the server by using its right-click menu.

12. This Beta version of the CDB 3.0 has a bug that we are working on, and this step is just a
quick workaround to get us moving. In the Flex perspective, open the file
org.eclipse.wst.common.components in the .settings folder, just enter a space
character somewhere and save it.
In Java perspective, restart the server. This step won’t be needed in the production release
of CDB 3.0.

13. Switch to the Flex Perspective, and copy the file
Employee_getEmployees_GridTest.mxml from test.rpc.com.farata to
flex_src directory, set it as a default application, right-click and run it as Flex
application.

The basic RIA CRUD application is ready!

14. To test the database updates, modify, say the last name of an employee. After you tab out
of the last name field, the button Commit becomes enabled, and you’ll be able to apply
your changes to the database.
The button Fill is for data retrieval from the server side.
The Add button is for adding new data.
 The button Remove becomes enabled when you select a row in the data grid.

The source code of our RIA CRUD application is available, and you can use it as a
foundation of your future project just add the required components to the code shown

below.

The server-side code is deployed under Tomcat server, and the relevant classes are located under
the folder WebContent in your project. While generating this project, CDB has added a library
component.swc to the build path. It contains the class library called theriabook created by
Farata Systems. It includes a number of handy components that enhance standard controls of Flex
framework and a number of classes simplifying communication with the database layer.

theriabook is a non-intrusive class library allows you to mix and match original Flex components
with the ones that come with Flex framework. The difference between theriabook and all other
Flex frameworks is that
 a) it’s not a framework but a class library;
 b) while other frameworks require you to add some extra code to your application, theriabook
makes your codebase smaller.

For example, the following auto-generated code from
Employee_getEmployees_GridTest.mxml uses an object DataCollection from
theriabook, which is nothing else but a subclass of Flex class ArrayCollection. Look at the
code in the onCreationComplete() function below. DataCollection is a smart data-aware
class that combines the functionality of Flex ArrayCollection, RemoteObject and some
functionality of the Data Management Services that are available in LiveCycle Data Services. Just
set the destination and the method to call, and call it’s methods fill() or sync(). No need to
define the RemoteObject with result and fault handlers, no server-side configuration is required.

<mx:Button label="Fill" click="fill_onClick()"/>

<mx:Button label="Remove" click="collection.removeItemAt(dg.selectedIndex)" enabled="{dg.selectedIndex
!= -1}"/>
<mx:Button label="Add" click="addItemAt(Math.max(0,dg.selectedIndex+1)) "/>
<mx:Button label="Commit" click="collection.sync()" enabled="{collection.commitRequired}"/>
…

 import com.theriabook.rpc.remoting.*;
 import com.theriabook.collections.DataCollection;
 import mx.collections.ArrayCollection;
 import mx.controls.dataGridClasses.DataGridColumn;
 import mx.events.CollectionEvent;
 import mx.formatters.DateFormatter;

 import com.farata.dto.EmployeeDTO;

 [Bindable]
 public var collection:DataCollection ;
 [Bindable]
 private var log : ArrayCollection;

 private function onCreationComplete() : void {
 collection = new DataCollection();
 collection.destination="com.farata.Employee";
 collection.method="getEmployees";
 //getEmployees_sync is the default for collection.syncMethod
 log = new ArrayCollection();
 collection.addEventListener(CollectionEvent.COLLECTION_CHANGE,
 logEvent);
 collection.addEventListener("fault", logEvent);
 fill_onClick();
 }
 private function fill_onClick():void {
 collection.fill();
 }

 private function addItemAt(position:int):void {
 var item:EmployeeDTO = new EmployeeDTO();
 collection.addItemAt(item, position);
 dg.selectedIndex = position;
 }

 private function logEvent(evt:Event):void {
 if (evt.type=="fault") {
 logger.error(evt["fault"]["faultString"]);
 } else {
 if (evt.type=="collectionChange") {
 logger.debug(evt["type"] + " " + evt["kind"]);
 } else {
 logger.debug(evt["type"]);
 }
 }
 }

Even though this code was auto-generated, nothing stops you from modifying it to your liking.
CDB and theriabook library gives your project a jump start and the resulting code base is small –

the Employee_getEmployees_GridTest.mxml is only about 90 lines of code, which
includes 10 empty lines and the code for logging!

The other freebee that CDB gives you is an automated ANT process of building and deploying your
project both on the client and the server. You do not need to worry about creating compatible
Java and ActionSript DTO objects. If the structure of the result set of the server side data is
changing, just change the SQL statement in your Java abstract class and re-run the daoflex-
build.xml.

Our cooking class is over. Today’s recipe is one of the best practice techniques that we that we use
while working on the projects for our clients.

Originally, Clear Data Builder was released as a command-line open source code generator called
daoflex. It was submitted to Adobe Flex component exchange about two years ago and quickly
became one of the most downloadable components. Its next incarnation was a commercial plugin
CDB 1.1 for Flex 2 (see http://www.myflex.org). And the upcoming release of CDB 3.0 plugin will
become a freely available Eclipse plugin, which is a yet another contribution of Farata Systems to
Flex community.

The other free products that Farata Systems will release this Summer include:

- Fx2Ant 3.0 – a generator of optimized Ant build scripts for your Flex projects
- Log4FX 3.0 – an advanced log facility for Flex/Java projects
- DTO Creator – a utility that can take any Java data transfer object (formerly value object) and
 create an efficient and customizable matching ActionSript DTO

Stay tuned.

http://www.myflex.org/
http://www.faratasystems.com/

	Cooking RIA CRUD with Flex and BlazeDS
	Ingredients
	Time of cooking
	Serves more than 10,000 people
	Directions

