

 JavaTM Programming for Kids,
Parents

and GrandParents

Yakov Fain

 Java Programming for Kids, Parents and Grandparents iii

Java Programming for Kids, Parents and Grandparents

by Yakov Fain

Copyright © 2004 Smart Data Processing, Inc.
 14 Molly Pitcher Dr.
 Manalapan, New Jersey, 07726, USA

All rights reserved. No part of this book may be reproduced, in any form or by
any, without permission in writing from the publisher.

Cover design and illustrations: Yuri Fain

Adult technical editor: Yuri Goncharov

Kid technical editor: David Fain

May 2004: First Electronic Edition

The information in this book is distributed without warranty. Neither the author nor the publisher
shall have any liability to any person or entitle to any liability, loss or damage to be caused directly
or indirectly by instructions contained in this book or by the computer software or hardware
products described herein.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Windows 98, Windows NT, Windows 2000 and Windows XP are trademarks of Microsoft Corporation.
All other product names and company names are the property of their respective owners.

The publisher offers discount on this book when ordered in bulk quantities. For
more information, send an e-mail at books@smartdataprocessing.com.

ISBN: 0-9718439-5-3

mailto:booksales@smartdataprocessing.com

Table of Contents
PREFACE ... IX

ACKNOWLEDGEMENTS...XI

CHAPTER 1. YOUR FIRST JAVA PROGRAM.. 1

How to Install Java on Your Computer ... 2

Three Main Steps in Programming .. 6
Step 1 – Type the Program ... 6
Step 2 – Compile the Program.. 8
Step 3 – Run the Program... 9

Additional Reading .. 10

CHAPTER 2. MOVING TO ECLIPSE.. 11

Installing Eclipse .. 11

Getting Started with Eclipse.. 13

Creating Programs in Eclipse ... 15

Running HelloWorld in Eclipse... 16

How HelloWorld Works? .. 17

Additional Reading .. 20

Practice.. 20

Practice for Smarty Pants.. 21

CHAPTER 3. PET AND FISH – JAVA CLASSES .. 22

Classes and Objects .. 22

Data Types .. 25

Creation of a Pet .. 28

Inheritance – a Fish is Also a Pet .. 33

Method Overriding .. 37

Additional Reading .. 38

Practice.. 38

Practice for Smarty Pants.. 39

 Java Programming for Kids, Parents and Grandparents v

CHAPTER 4. JAVA BUILDING BLOCKS ... 40

Program Comments ... 40

Making Decisions with if Statements.. 41

Logical Operators... 43

The logical not here is applied to the expression in parentheses. ... 44

Conditional operator.. 44

Using else if .. 44

Making Decisions With switch Statement.. 45

How Long Variables Live? .. 46

Special Methods: Constructors ... 47

The Keyword this .. 48

Arrays.. 49

Repeating Actions with Loops... 51

Additional Reading .. 54

Practice.. 54

Practice for Smarty Pants.. 54

CHAPTER 5. A GRAPHICAL CALCULATOR... 55

AWT and Swing ... 55

Packages and Import Statements.. 55

Major Swing Elements... 56

Layout Managers.. 59
Flow Layout ... 59
Grid Layout .. 60
Border Layout .. 62
Combining Layout Managers ... 62
Box Layout... 65
Grid Bag Layout... 66
Card Layout.. 68
Can I Create Windows Without Using Layouts? ... 68

Window Components ... 68

Additional Reading .. 72

Practice.. 72

Practice for Smarty Pants.. 73

CHAPTER 6. WINDOW EVENTS ... 74

Interfaces... 75

Action Listener ... 77
Registering Components with ActionListeneter ... 78
What’s the Source of an Event? ... 79

How to Pass Data Between Classes ... 81

Finishing Calculator... 83
Some Other Event Listeners... 89

How to Use Adapters.. 90

Additional Reading .. 91

Practice.. 91

Practice for Smarty Pants.. 91

CHAPTER 7. THE TIC-TAC-TOE APPLET ... 92

Learning HTML in 15 Minutes... 93

Writing Applets Using AWT ... 96

How to Write AWT Applets .. 97

Writing a Tic-Tac-Toe Game .. 99
The Strategy ... 99
The Code .. 100

Additional Reading .. 110

Practice.. 110

Practice for Smarty Pants.. 111

CHAPTER 8. PROGRAM ERRORS - EXCEPTIONS.. 112

Reading the Stack Trace.. 113

Genealogical Tree of Exceptions ... 114

The keyword throws .. 117

The Keyword finally .. 118

The Keyword throw ... 119

Creating New Exceptions... 121

Additional Reading .. 123

Practice.. 123

 Java Programming for Kids, Parents and Grandparents vii

Practice for Smarty Pants.. 123

CHAPTER 9. SAVING THE GAME SCORE ... 124

Byte Streams ... 124

Buffered Streams.. 127

Command-Line Arguments... 129

Reading Text Files .. 132

Class File .. 135

Additional Reading .. 137

Practice.. 137

Practice for Smarty Pants.. 138

CHAPTER 10. MORE JAVA BUILDING BLOCKS ... 139

Working with Date and Time Values ... 139

Method Overloading .. 140

Reading Keyboard Input ... 143

More on Java Packages.. 145

Access Levels... 148

Getting Back to Arrays ... 151

Class ArrayList .. 154

Additional Reading .. 158

Practice.. 158

Practice for Smarty Pants.. 159

CHAPTER 11. BACK TO GRAPHICS – THE PING PONG GAME 160

The Strategy.. 160

The Code ... 161

Java Threads Basics ... 169

Finishing Ping Pong Game .. 175

What to Read Next on Game Programming .. 185

Additional Reading .. 186

Practice.. 186

Practice for Smarty Pants.. 186

APPENDIX A. JAVA ARCHIVES - JARS .. 188

Additional Reading .. 189

APPENDIX B. ECLIPSE TIPS .. 190

Eclipse Debugger .. 191

APPENDIX C. HOW TO PUBLISH A WEB PAGE ... 194

Additional Reading .. 197

Practice.. 197

INDEX.. 198

 Java Programming for Kids, Parents and Grandparents ix

Preface

One day my son Davey-steamboat showed up in my office with my
rated “R” Java tutorial in his hands. He asked me to teach him
programming so he could create computer games. At that time I’ve
already written a couple of books on Java and taught multiple
classes about computer programming, but all of this was for
grownups! A search on Amazon could not offer anything but books
for dummies, but Davey is not a dummy! After spending hours on
Google I found either some poor attempts to create Java courses
for kids, or some reader-rabbit-style books. Guess what? I decided
to write one. To help me understand the mentality of the little
people, I decided to ask Davey to become my first kid student.

This book will be useful for the following groups of people

• Kids from 11 to 18 years old
• School computer teachers
• Parents who want to teach their kids programming
• Complete beginners in programming (your age does not

matter)

Even though I use a simple language while explaining
programming, I promise to treat my readers with respect - I’m not
going to write something like “Dear friend! You are about to begin
a new and exciting journey…”. Yeah, right! Just get to the point!

First chapters of the book will end with simple game-like programs
with detailed instructions on how to make them work. Also we are
going to create a calculator that looks and works similarly to the
one that you have in your computer. In the second part of the
book we’ll create together game programs Tic-Tac-Toe and Ping-
Pong.

You’ll need to get used to the slang of professional programmers,
and all important words will be printed in this font.

Java language elements and programs will be shown in a different
font, for example String.

This book does not cover each and every element of the Java
language, otherwise it would be too fat and boring. But at the end
of each chapter there is a section Additional Reading wit links to
Web sites with more detailed explanations of the subject.

You’ll also find assignments at the end of each chapter. Every
reader has to complete assignments given in the section Practice.

If these assignments are too easy for you, I challenge you to do
assignments from the section Practice for Smarty Pants. Actually, if
you are reading this book, you are a smart person and should try
to complete all the assignments.

To get the most out of this book, read it from the beginning to the
end. Do not move on until you understand the chapter you are
reading now. Teenagers, parents and grandparents should be able
to master this book without asking for help, but younger kids
should read this book with an adult.

 Java Programming for Kids, Parents and Grandparents xi

Acknowledgements

Thank you all architects and developers who worked for free on
Eclipse – one of the best available Integrated Development
Environment for Java.

Special thanks to New Jersey Transit bus drivers for the smooth
ride – a half of this book has been written while commuting to
work on the bus #139.

Thanks to a lovely lady and my wife Natasha for successfully
running a business called family.

Special thanks to Yuri Goncharov - an expert Java programmer
from Toronto, Canada. He reviewed the book, tested every code
example, and provided a valuable feedback to make this book a
little better.

Chapter 1. Your First Java Program

People talk to each other using different languages.

Similarly, they write computer programs like games, calculators,
text editors using different programming languages. Without
programs, your computer would be useless, and its screen would
be always black. Computer parts are called hardware, and
programs are known as software. The most popular computer
languages are Visual Basic, C++, and Java. What makes the Java
language different from many others?

First of all, the same Java program can run (work) on different
computers like PC, Apple and others without changes. As a matter
of fact, Java programs do not even know where they run, because
they run inside of a special software shell called Java Virtual
Machine (JVM). If, for example, your Java program needs to print
some messages, it asks JVM to do this, and JVM know how to
deal with your printer.

Second, Java makes it easy to translate your programs (screens,
menus and messages) to different human languages.

Third, Java allows you to create program elements (classes) that
represent objects from the real world. For example, you can create
a Java class called Car and set attributes of this class like doors,
wheels, similarly to what the real cars have. After that, based on
this class you can create another class, for example Ford, which
will have all the features of the class Car plus something that only
Fords have.

Fourth, Java is more powerful than many other languages.

Fifth, Java is free! You can find everything for creating your Java
programs on the Internet without paying a penny!

How to Install Java on Your Computer

To start programming in Java you need to download a special
software from the Web site of the company called Sun
Microsystems, that created this language. The full name of this
software is Java 2 Software Development Kit (J2SDK). At the time
of this writing its latest version 1.5.0 could be downloaded from
this Web site:

http://java.sun.com/j2se

Select release J2SE 1.5.0 or the newer one, and on the next Web
page under the title Downloads click on the link to this release.
Then click on the word Download under the title SDK. Accept the
license agreement and select Windows Offline Installation (unless
you have a Mac, Linux or Solaris computer). Press the button
Save on the next screen and select the folder on your hard disk
where you’d like to save the Java installation file. The file download
will start.

After the download ends, start the installation process – just
double-click on the file that you’ve downloaded, and this will
install J2SDK on your disk. For example, on Windows computer it
will create a folder like this one:
 c:\Program Files\java\j2sdk1.5.0, where c: is the name of
your hard disk.

http://java.sun.com/j2se

 Java Programming for Kids, Parents and Grandparents 3

If you do not have enough room on your c: drive, select a different
one, otherwise, just keep pressing the buttons Next, Install and
Finish on the windows that will be popping up on your screen. In
several minutes the installation of Java on your computer will be
complete.

In the next step of installation, you need to define two system
variables. For example, in Windows click on the button Start, and
get to the Control Panel (it might be hidden behind the menu
Settings), and click on the icon System. Select there a tab
Advanced, and click on the button Environment Variables.

On the next page you can see how this screen looks like on my
Windows XP notebook.

Th bles that already exist
in your system.

e next window will show all system varia

 Java Programming for Kids, Parents and Grandparents 5

ress the lower button New and declare the variable that will

 exists, just add the new Java directory and a
 box Variable Value:

P Path
help Windows (or Unix) find J2SDK on your machine. Double
check the name of the folder where you’ve installed Java. If the
variable Path already
semicolon to the very beginning of the

Also, declare the variab
semicolon as its value. T
your programs. The pe
your programs from the
just a separator:

le CLASSPATH by entering a period and a
his system variable will help Java find

riod means that Java has to start looking for
 current disk folder, and the semicolon is

Now the installation of J2SDK is complete!

9 Compile the program to translate it from Java language into

M understands.

e Program

hree Main Steps in Programming T

To create a working Java program you need to go through the
following tree steps:

9 Write the program in Java and save it on a disk.

a special byte code that JV

9 Run the program.

Step 1 – Type th

You can use any text editor to write Java programs, for example
Notepad.

If you have an old Windows 98 computer, you’ll need to
set the PATH and CLASSPATH variable in a different way.
Find
Notep
these variable at end of this file, for example:

SET CLASSPATH=.;

the file autoexec.bat on your c: drive, and using
ad or other text editor enter the proper values for

SET PATH=c:\j2sdk1.5.0\bin;%PATH%

After making this change you’ll need to restart your
computer.

 Java Programming for Kids, Parents and Grandparents 7

First, you’ll need to type the program and save it in a text file with
a name ending in .java. For example, if you want to write a
program called HelloWorld, enter its text (we call it source code) in

m that prints on the screen the words Hello
orld:

I’ll explain how th r, but
at this point just trust me – this program will print the words Hello
World in the step 3.

Notepad and save it in the file named HelloWorld.java. Please
do not use blanks in Java file names.

ere is the prograH
W

is program works a little later in this chapte

public class Hel

 public sta
 Syst ello World");

 }
}

loWorld {

tic void main(String[] args) {
em.out.println("H

Step 2 – Compile the Program

ow you
compile
rogram. Y

using the javac
piler, which is a

2SDK.

say you’ve
our program

N need to

this
ou’ll be p

com
part of J

Let’s
saved y
in the directory
called c:\practice.
Select the menus
Start, Run, and
enter the word cmd
to open a black
command window.

Just to make sure that you’ve set the system variables PATH and
CLASSPATH correctly, enter the word set and take another look at

eir values.
er to c:\practice and compile the

The program javac is Java compiler. You won’t see any
confirmation that your program HelloWorld has been compiled
successfully. This is the case when no news is good news. Type a
command dir and it’ll show you all the files that exist in your
folder. You should see there a new file named HelloWorld.class.
This proves that your program has been successfully compiled.
Your original file HelloWorld.java is also there, and you can
modify this file later to print Hello Mom or something else.

th
Change the current fold
rogram: p

cd \practice

javac HelloWorld.java

You do not have to name the folder practice – give it any name you
like.

In Windows 98 select the “MS DOS Prompt” from
the Start menu to open a command prompt window.

 Java Programming for Kids, Parents and Grandparents 9

If the program has syntax errors, let’s say you forgot to type the
last curly brace, Java compiler will print an error message. Now
you’d need to fix the error, and recompile the program again. If you
have several errors, you may need to repeat these actions more
than once until the file HelloWorld.class is created.

Step 3 – Run the Program

Now let’s run the program. In the same command window enter
the following:

java HelloWorld

Have you noticed that this time you’ve used the program java
instead of javac? This program is called Java Run-time

nvironment (JRE), or you may call it JVM like I did before. E

treat capital and small let
named the program H

Keep in mind that Java does n
same, which means that if yo
with a capital H and a capital
helloworld or helloWorld –

Now let’s have some

ot t s the
u elloWorld
 W, do not try to start the program
JV will complain.

fun - try to guess how to change this
program. I’ll explain how this program works in the next chapter,
but still, try to guess how to change it to say hello to you pet,
friend or print your address. Go through all three steps to see if the
program still works after your changes ☺.

In the next chapter I’ll show you how to type, compile and run your
programs in a more fancy place than a text editor and a black
command window.

er

M

Additional Reading

Creating your first application:
http://java.sun.com/docs/books/tutorial/getStarted/c
upojava/win32.html

Java installation instructions for
Windows:
http://java.sun.com/j2se/1.5.0/install-windows.html

 Java Programming for Kids, Parents and Grandparents 11

Chapter 2. Moving to Eclipse

Programmers usually work in so-called Integrated

Development Environment (IDE). You can write, compile and run
programs there. IDE also has a Help thingy that describes all
elements of the language, and makes it easier to find and fix errors

 your programs. While some IDE programs are expensive, there
 an excellent free IDE called Eclipse. You can download it from

in
is
the Web site www.eclipse.org. In this chapter I’ll help you to
download and install Eclipse IDE on your computer, create there a
project called Hello World, and after this we’ll be creating all our
programs there. Make yourself comfortable in Eclipse – it’s an
excellent tool that many professional Java programmers use.

Installing Eclipse

Open the Web page www.eclipse.org and click on the Download

enu on the left (http). Click on the link Main Eclipse Download
Site and select the version of Eclipse you want to download. They
usually have one latest release and several stable builds. The latest
release is an officially released product. Even though stable builds
may have more features, they still may have some minor
problems. At the time of this writing the latest stable build is
3.0M8. Select this build and you’ll see the following window:

m

Click on the link (http) next to the word Windows, Mac, or Linux

load the file with this long
name that ends with .zip to any folder on your disk.

Now you just have to unzip
this file into your c: drive. If
you already have the
program WinZip installed on
your computer, right-click on
this file and select the
WinZip on the menu and the
option Extract To. If you have
room on your c: drive, press
the button Extract, otherwise
select another disk that has
more space available.

depending on your computer, and down

Files with the name suffix
.zip are archives, and they
contain many other files
inside. To unzip the file
means to extract the content
of this archive on the disk.
The most popular archive
program is called WinZip and
you can download its trial
version at www.winzip.com.

You’ll need it to complete
installation of Eclipse.

 Java Programming for Kids, Parents and Grandparents 13

Installation of Eclipse is complete! For your convenience, create the
shortcut for Eclipse. Right-click on the desktop of your computer,
then press New, Shortcut, Browse, and select the file eclipse.exe
in the folder c:\eclipse. To start the program, double-click on the
blue icon Eclipse, and you’ll see the first Welcome screen (this
screen is changing sligtly with e

ach Eclipse build):

If your screen looks different, proceed to so-called Workbench,

nd run
ava program u can also find a nice tutorial under

 Development User

everal files.

 press the button Next on the New
roject Window. Now you’ll need to enter the name of your new

My First Project:

which is the working area for your Java projects.

Getting Started with Eclipse

In this section I’ll show you how you can quickly create a
J s in Eclipse. Yo
the menus Help, Help Contents, and Java

uide. G

To start working on a program you’ll need to create a new project.
A simple project like our HelloWorld will have just one file –
HelloWorld.java. Pretty soon we’ll create more advanced
rojects that will consist of sp

To create a brand new project in Eclipse just click on the menus
File, New, Project, and then
P
project, for example

Look at the grayed out box Directory. It tells you where the files of
this project will be located on the disk. Eclipse has a special folder
workspace, where it keeps all files for your projects. Later on,
you’ll create separate projects for a calculator program, a Ti -Tac-
oe game, and other programs. There will be several projects in the

kbench has several smaller areas called perspectives
hich are different views of your projects.

c
T
workspace folder by the end of this book.

Eclipse wor
w

 Java Programming for Kids, Parents and Grandparents 15

 you click on the little plus sign by My First Project, it’ll expand
nvironment (JRE)

ystem Library which is a part of the project If for any reason
you d
Preferenc
button B nstalled Java, for
example c:\j2sdk1.5.0.

Creatin

Let’s recr
Java programs are classes that represent objects from real life.
ou’ll learn more about classes in the next chapter.

To create
enter He
methods

If
showing you an item Java Run-time E
S

o not see JRE there, click on the menus Windows,
es, Java, Editor, Installed JREs, Add, and, using the
rowse find the folder where you have i

g Programs in Eclipse
eate the HelloWorld program from Chapter 1 in Eclipse.

Y

 a class in Eclipse select the menus File, New, Class and
lloWorld in the field Name. Also, in the section Which
stubs you would like to create, check off the box

public static void main(String[] args)

escribe
our class. After the comments you’ll find the code of the class
HelloWorld with an empty method main(). The word method
means action. To run a Java class as a program, this class must
have a method called main().

To complete our program, place the cursor after the curly brace in
the line with main, push the button Enter and type the following
on the new line:

Press the button Finish, and you’ll see that Eclipse created for you
the class HelloWorld. It placed program comments (the text
between /* and */) on top - you should change them to d
y

public class HelloWorld {

 public static void main(String[] args) {
 }
}

System.out.println("Hello World");

To save the program on disk and compile it, just press at the same
time two buttons on your keyboard: Ctrl-S. If you did not make
ny syntax errors, you won’t see any messages – the program is

ickly find
nes by double-clicking on the
tive. Let’s put the curly brace

 program is a one-class project. But pretty soon you
rojects will have several Java classes. That’s why before running

elect the menu Run, then Run…(make sure that Java Application
 selected in the top left corner), and enter the names of the

project and the main class:

a
compiled. But let’s make an error on purpose to see what’s going to
happen. Erase the last curly brace and hit Ctrl-S again. Eclipse will
display the Unmatched Brace error in the tasks perspective, and
also it will place a red mark at the line that has a problem.

As your projects become larger, they’ll have several files and
ompiler may generate more than one error. You can quc

(not fix though) the problematic li
ror message in the tasks perspecer

back and hit Ctrl-S again – voila, the error message is gone!

Running HelloWorld in Eclipse

Our simple
p
the project for the first time, you need to tell Eclipse which class in
this project is the main one.

S
is

 Java Programming for Kids, Parents and Grandparents 17

Now press the bu int
the words Hello W nsole view the same way as it did in
Chapter 1.

ow you can run his project by selecting the menus Run, Run Last
aunched or by pressing the buttons Ctrl-F11 on the keyboard.

How HelloWorld Works?

Let’s start learning what’s actually happening in the program
HelloWorld.

The class HelloWorld has only one method main(), which is an
entry point of a Java application (program). You can tell that main
is a method, because it has parentheses after the word main.
Methods can call (use) other methods, for example our method
main() calls the method println() to display the text Hello
World on the screen.

Each method starts with a declaration line called a method
signature:

tton Run, to start the the program. It will pr
orld in the co

N t
L

public static void main(String[] args)

lowing:

¾ Who can access the method - public. The keyword
public m essed
by any o

¾ Instructions on how to use it - static. The keyword

static means that you don’t have to create an instance
(a copy) of HelloWorld object in memory to use this
method. We’ll talk about class instances more in the next
chapter.

¾ Does the method return any data? The keyword void

means that the method main() doesn’t return any data to
the calling program, which is Eclipse in this case. But if
for example, a method had to perform some calculations,
it could have returned a resulting number to its caller.

¾ The name of the method is main.

¾ The list of arguments – some data that could be given to

the method - String[] args. In the method main()
the String[] args means that this method can receive
an array of Strings that represent text data. The values
that are being passed to a method are called arguments.

 I said before, you can have a program that consists of several
asses, but one of them has the method main(). Java class

usually have several methods. For example, a class Game can
have the methods startGame(), stopGame(), readScore(),
and so on.

The body of our method main()has only one line :

This method signature tells us the fol

eans that the method main() could be acc
ther Java class or JVM itself.

As
cl

System.out.println("Hello World");

Every command or a method call must end with a semicolon ;.
The method println()knows how to print data on the system
console (command window). Java’s method names are always
followed by parentheses. If you see a method with empty
parentheses, this means that this method does not have any
arguments.

The System.out means that the variable out is defined inside the
class System that comes with Java. How are you supposed to
know that there’s something called out in the class System?
Eclipse will help you with this. After you type the word System and
a dot, Eclipse will show you everything that is available in this

 Java Programming for Kids, Parents and Grandparents 19

lass. At any time you can also put a cursor after the dot and
press

c
 Ctrl-Space to bring up a help box similar to this one:

The out.println() tells us that there is an object represented by

mething called out” has a method
etween a class and a method name

eans that this method exists inside this class. Say you have a
lass PingPongGame that has a method saveScore(). This is how

call this method for Dave who won three games:

a variable out and this “so
called println(). The dot b
m
c
you can

Pi

Again, the data between parentheses are called arguments or
pa ameters. These parameters are given to a method for some kind
of processing, for example saving data on the disk. The method
saveScore() has two arguments –a text string “Dave”, and the
number 3.

ngPongGame.saveScore("Dave", 3);

r

Eclipse will add fun to writing Java programs. Appendix B has
some useful tips and tricks that will speed up your Java
programming in this excellent IDE.

Additional Reading

Eclipse Web Page:

http://www.eclipse.org

Practice

Change the class HelloWorld to print
your address using several calls to

println().

 Java Programming for Kids, Parents and Grandparents 21

Practice for Smarty Pants

Change the class HelloWorld to print
the word Hello like this:

3. Pet and Fish – Java Classes

 have different preferences
em agree that it’s better to

in a so-called object-oriented style. This means that good
mers start with deciding which objects have to be

lasses an Objects

ideoGame. This class may
ave several methods, which can tell what objects of this class can

e, stop it, save the score, and so on. This class
ave some attributes or properties: price, screen color,

ntrols and others.

Chapter

Java programs consist of classes that represent objects from

the real world. Even though people may
s to how to write programs, most of tha

do it
program
included in the program and which Java classes will represent
them. Only after this part is done, they start writing Java code.

dC

Let’s create and discuss a class named V
h
do: start the gam
also may h
number of remote co

Classes in Java may have methods and attributes.

cribe the class.

Methods define actions that a class can perform.

Attributes des

 Java Programming for Kids, Parents and Grandparents 23

In Java language this class may look like this:

screens of different size
nd color, all of them perform similar actions, and all of them cost

s

Our class VideoGame should be similar to other classes that
represent video games – all of them have
a
money.

We can be more specific and create another Java class called
GameBoyAdvance. It also belongs to the family of video games, but
has some properties that are specific to the model GameBoy
Advance, for example a cartridge type.

In
–

class GameBoyAdvance {

 String cartridgeType;
 int screenWidth;

 void startGame() {

 }
 void stopGame() {

 }
}
class VideoGame {
 String color;
 int price;

 void start () {
 }
 void stop () {
 }
 void saveScore(String playerName, int score) {
 }
}

o attributes
 cartridgeType and screenWidth and two methods –
tartGame() and stopGame(). But these methods can’t perform

 this example the class GameBoyAdvance defines tw

any a
curly bra

ctions just yet, because they have no Java code between the
ces.

A
g
m
d
in

In
ni

G

c
r
a
o

In a i
the new meaning of the word object.

The

dd tion to the word class, you’ll have to get used to

 phrase “to create an instance of an object” means to
create a copy of this object in the computer’s memory

rd ng to the definition of its class. acco i

 relates to its instance in
ess of building actual games based on this

e process of creating

 factory description of the GameBoy Advance relates to an actual
me the same way as a Java classa
emory. The proc

escription in the game factory is similar to th
stan GameBoy . ces of objects in Java

 many cases, a program can use a Java class only after its
stance has been created. Vendors also create thousands of game

e description. Even though these copies
 they may have different values in their

d so
s, a program may create multiple instances of the

ameBoyAdvance objects.

opies based on the sam
present the same class,e

ttributes - some of them are blue, while others are silver, an
n. In other word

 Java Programming for Kids, Parents and Grandparents 25

a a variables represent attributes of a class, method arguments
r ethod for a short-time storage of
o a. Variables have to be declared first, and only after this

 declare
 v bles x of some numeric data type like integer or

o

Data Types

J v
o could be used inside the m

e dats m
is done you can use them.

Remember equations like y=x+2? In Java you’d need to

aria and ythe
d uble:

in x; t
in

h o lines show how you can assign a value to these
a
, even:

=
= +2;

 Java you are also allowed to change the value of a variable in a
omewhat unusual way. The following two lines change the value
 the variable y from five to six:

t y;

e next tw

T
v riables. If your program assigns the value of five to the variable

 the variable y will be equal to sx

x 5;
y x

In
s
of

i
y+
nt y=5;
+;

Despite the two plus signs, JVM is still going to increment the
value of the variable y by one.

After the next code fragment the value of the variable myScore is
lso six: a

int myScore=5;
myScore=myScore+1;

You can also use multiplication, division and subtraction the same

ay. Look at the following piece of code: w

i

nt myScore=10;

myScore--;
myScore=myScore*2;
myScore=myScore/3;

System.out.println("My score is " + myScore);

What this code prints? Eclipse has a cool feature called a
scrapbook that allows quickly test any code snippet (like the one
above) without even creating a class. Select menus File, New,

Scrapbook Page and type the word Test as the name of your
scrapbook file.

Now enter these five lines that manipulate with myScore in the
scrap book, highlight them, and click on the little looking glass on
the toolbar.

To sult of the score calculations, just click on the
o ole tab at the bottom of the screen:

re is ” and the value of the
ariable myScore, which was six. Creation of a String from pieces
 called concatenation. Even though myScore is a number, Java

gh to convert this variable into a String, and then
t text My Score is.

ways of changing the values of the variables:

ore=myScore*2; is the same as myScore*=2;
yScore=myScore+2; is the same as myScore+=2;

here are eight simple, or primitive data types in Java, and you
have t
data that

 s
ns

ee the re
c

My score is 6

In this example the argument of the method println() was glued
rom two pieces – the text “My scof
v
is
is smart enou
a tach it to the

Look at some other

mySc
m
myScore=myScore-2; is the same as myScore-=2;
myScore=myScore/2; is the same as myScore/=2;

T

o decide which ones to use depending on the type and size of
 you are planning to store in your variables:

 Java Programming for Kids, Parents and Grandparents 27

9

9 One logical data type called boolean that allows only two

You can assign an initial value to a variable during its declaration
n ble initialization:

9 Four data types for storing integer values – byte, short,
int, and long.

9 Two data types for values with a decimal point – float
and double.

One data type for storing a single character – char.

values: true or false.

d this is called variaa

char grade = 'A';
in t chairs = 12;
bo = false; olean playSound
do 3863494965745.78; uble nationalIncome = 2
fl oat gamePrice = 12.50f;
lo

 last two lines f means float and l means long.

s boolean
a les, and a special code ‘\u0000’ to a char.

h ed in a variable
e to this variable only once, and

alue cannot be changed afterwards. In some languages the
n l variables are called constants. In Java we usually name final
ariables using capital letters:

ng totalCars =4637283648392l;

In the

If you don’t initialize the variables, Java will do it for you by

ning zero to each numeric variable, false toa sig
bv ria

ere is also a special keyword fin

ration, you can assign a value
al, and if it’s usT

d cla
vthis

fi a
v

final String STATE_CAPITAL="Washington";

In addition to primitive data types, you can also use Java classes
to declare variables. Each primitive data type has a corresponding
wrapper class, for example Integer, Double, Boolean, etc. These
classes have useful methods to convert data from one type to
another.

While a char data type is used to store only one character, Java
also has a class String for working with a longer text, for
example:

String lastName="Smith";

 Java, variable names can not start with a digit and can not
ontain spaces.

In
c

Creation of a Pet

et’s design and create a class Pet. First we need to decide what

ld look similar to this one:

L
actions our pet will be able to do. How about eat, sleep, and say?
We’ll program these actions in the methods of the class Pet. We’ll
also give our pet the following attributes: age, height, weight, and
color.

Start with creating a new Java class called Pet in My First Project
as described in Chapter 2, but do not mark the box for creation of
the method main().

our screen shouY

A bit is the smallest piece of data that can be stored in

o bytes in memory.

ory.

ypes use eight bytes

1 kilobyte (KB) has 1024 bytes

1 megabyte (MB) has 1024 kilobytes

1 gigabyte (GB) has 1024 megabytes

memory. It can hold either 1 or 0.

A byte consists or eight bits.

A char in Java occupies tw

An int and a float in Java take four bytes of mem

Variables of long and double t
each.

Numeric data types that use more bytes can store larger
numbers.

 Java Programming for Kids, Parents and Grandparents 29

ow we are ready to declare attributes and methods in the N class
ir bodies in curly

class attributes we should pick data types

Pet. Java classes and methods enclose the
brace must have a matching closing braces. Every open curly

brace:

To declare variables for
for them. I suggest an int type for the age, float for weight and
height, and String for a pet’s color.

T
d
a

class Pet{
 int age;
 float weight;
 float height;
 String color;
}
class Pet{
}

 yo should decide if it should take any

9 The method sleep() will just print a message Good night,

he next step is to add some methods to this class. Before
eclaring a method u
rguments and return a value:

see you tomorrow – it does not need any arguments and
will not return any value.

 method eat().It will print the
message I’m so hungry…let me have a snack like nachos!.

9 The method say() will also print a message, but the pet
will “say” (print) the word or a phrase that we give to it.
We’ll pass this word to the method say() as a method
argument. The method will build a phrase using this
argument and will return it back to the calling program.

The new version of the class Pet will look like this:

9 The same is true for the

This class represents a friendly creature from the real world:

Let’s talk now about the signature of the method sleep():

public class Pet {
 int age;
 float weight;
 float height;
 String color;

ublic void sleep(){

 System.out.println(
 "Good night, see you tomorrow");
 }

 "I’m so hungry…let me have a snack like nachos!");
 }

}

 p

 public void eat(){
 System.out.println(

 public String say(String aWord){
 String petResponse = "OK!! OK!! " +aWord;
 return petResponse;
 }

 Java Programming for Kids, Parents and Grandparents 31

y other Java

 prints the same text.

 looks like this:

me text, and this is the meaning of the keyword

public void sleep()

 tells us that this method can be called from anIt
class (public), it does not return any data (void). The empty
parentheses mean that this method does not have any arguments,
because it does not need any data from the outside world – it
lwaysa

ethod say()The signature of the m

public String say(String aWord)

This method can also be called from any other Java class, but has
to return so
String in front of the method name. Besides, it expects some text
data from outside, hence the argument String aWord.

How do you decide if a method should or should not return a
value? If a method performs some data manipulations and has to
give the result of these manipulations back to a calling class, it
has to return a value. You may say, that the class Pet does not
have any calling class! That’s correct, so let’s create one called
PetMaster. This class will have a method main()containing the
code to communicate with the class Pet. Just create another class
PetMaster, and this time select the option in Eclipse that creates
the method main(). Remember, without this method you can not
run this class as a program. Modify the code generated by Eclipse
to look like this:

D
T
R
th

I
O
G

T
in
th

P

T
tr
v
c
m

m

If
d
r
y

S

p

A
p

public class PetMaster {

 public static void main(String[] args) {

 String petReaction;

m.out.println(petReaction);

 myPet.sleep();

 }

 Pet myPet = new Pet();

 myPet.eat();
 petReaction = myPet.say("Tweet!! Tweet!!");
 Syste

}

o not forget to press Ctrl-S to save and compile this class!
o k on the Eclipse menus Run,

e of the main class: PetMaster. Push
rogram will print the following text:

’
K
o

h Pet reating an
eclares a variable myPet and uses

 operator new:

et myPet = new Pet();

 a method returns a value, you should call this method in a
i iable that has the same type as the
e rn v
o

t

e et!!");

e is stored in the variable
e eaction and if you want to see what’s in there, be my guest:

 run the class PetMaster clic
un…, New and type the nam

 button Run and the pe

m so hungry…let me have a snack like nachos!
! OK!! ! Tweet!! Tweet!!
od night, see you tomorrow

e is the calling class, and it starts with cMaster
 of the object Pet. It dstance

avae J

his line declares a variable of the type Pet (that’s right, you can
eat any classes created by you as new Java data types). Now the
ariable myPet knows where the Pet instance was created in the
omputer’s memory, and you can use this variable to call any
ethods from the class Pet, for example:

yPet.eat();

fferent way. Declare a var
tu alue of the method, and assign it to this variable. Now

hod: u can call this met

 ring petReaction;

tReaction = myPet.say("Tweet!! Twe

t this point the returned valu
tR

 Java Programming for Kids, Parents and Grandparents 33

ystem.out.println(petReaction); S

Inheritance – a Fish is Also a Pet

Our class Pet will help us learn yet another important feature of
Java called inheritance. In the real life, every person inherits some
features from his or her parents. Similarly, in the Java world you
can also create a new class, based on the existing one.

The class Pet has behavior and attributes that are shared by
many pets – they eat, sleep, some of them make sounds, their
skins have different colors, and so on. On the other hand, pets are
different - dogs bark, fish swim and do not make sounds,
parakeets talk better than dogs. But all of them eat, sleep, have
weight and height. That’s why it’s easier to create a class Fish
that will inherit some common behaviors and attributes from the
lass Pet, rather than creating Dog, Parrot or Fish from scratch
very time.

c
th

c
e

A special keyword extends that will do the trick:

Y

class Fish extends Pet{

}
ou can say that our Fish is a subclass of the class Pet, and the
lass Pet is a superclass of the class Fish. In other words, you use
e class Pet as a template for creating a class Fish.

ss Fish as it is now, you can still use

ven if you will leave the claE
every method and attribute inherited from the class Pet. Take a
look:

Fish myLittleFish = new Fish();
m

yLittleFish.sleep();

e have not declared any methods in the class Fish

Pe

Even though w
yet, we are allowed to call the method sleep() from its
superclass!

Creation of subclasses in Eclipse is a piece of cake! Select the
menus File, New, Class, and type Fish as the name of the class.
Replace the java.lang.Object in the field superclass with the

ord t. w

Let’s not forget, however, that we’re creating a subclass of a Pet
to add some new features that only fish have, and reuse some of
the code that we wrote for a general pet.

 Java Programming for Kids, Parents and Grandparents 35

n dive, but fish certainly can. Let’s add a new
ethod dive() to

The method dive(fish
how deep it should go. We’ve also declared a class variable
currentDepth tha e current depth every

dive(). This method returns the current
alue of the variable currenDepth to the calling class.

lease create another class FishMaster that will look like this:

ot all pets caN
m

 the class Fish now.

) has an argument howDeep that tells the

t will store and update th
time you call the method
v

P

It’s time to reveal a secret –
inherited from the super-du

 all classes in Java are
per class Object,

regardless if you do use the word or not.

But Java classes
If this would happen with people, kids would not be
subclasses of their parents, but all the boys would
descendents of A
Eve ☺.

extends

 can not have two separate parents.

dam, and all the girls descendents of
public class FishMaster {

 public static void main(String[] args) {

 Fish myFish = new Fish();

 myFish.dive(2);
 myFish.dive(3);

 myFish.sleep();
 }
}
public class Fis

 int currentDe

 public int d
 currentDep
 System.out

 System.out ntDepth +
 " feet below sea level");
 return cur
 }
}

h extends Pet {

pth=0;

ive(int howDeep){
th=currentDepth + howDeep;
.println("Diving for " + howDeep +
 " feet");
.println("I'm at " + curre

rentDepth;

e object Fish and calls its
dive()

e method sleep it
will print the follow

Diving for 2 feet
I'm at 2 feet belo
Diving for 3 feet
I'm at 5 feet be o
Good night, see you tomorrow

Have you noticed that beside methods defined in the class Fish,

e FishMaster also calls methods from its superclass Pet?
 whole point of inheritance – you do not have to copy

and paste code from the class Pet – just use the word extends,
and the class Fish can use Pet’s methods!

The method main() instantiates th
ethod twice with different arguments. After that, it callsm

th (). When you run the program FishMaster,
ing messages:

 sea level w

l w sea level

th
That’s the

One more thing, even though the method dive() returns the
value of currentDepth, our FishMaster does not use it. That’s
fine, our FishMaster does not need this value, but there may be
some other classes that will also use Fish, and they may find it
useful. For example, think of a class FishTrafficDispatcher
that has to know positions of other fish under the sea before
allowing diving to avoid traffic accidents ☺.

 Java Programming for Kids, Parents and Grandparents 37

ethod Overriding

 you kn it aloud).
But our cl that has
a method writing
something like this:

Fish.say();

r fish started to talk… If you do not want this to happen,
 Fish has to override the Pet’s method say(). This is how
: if you declare in a subclass a method with exactly the
nature as in its superclass, the method of the subclass

M

As ow, fish do not speak (at least they do not do

ass Fish has been inherited from the class Pet
say(). This means tha nothing stops you fromt

my

Well, ou
the class
it works
same sig
will be used instead of the method of the superclass. Let’s add the
method say() to the class Fish.

N
c

m

R

T

W

D

o

public String say(String something){
 return "Don't you know that fish do not talk?";
}
 call to the method main() of the
lass FishMaster:
ow add the following method

yFish.say("Hello");

un the program and it’ll print

on't you know that fish do not talk?

h s been overridden, or in
ther words s press

o

is proves that Pet’s method say() ha
up ed.

w! We’ve learned a lot in this chapter – let’s just take a break.

If a method signature includes the keyword final, such
m

f

ethod can not be overridden, for example:

inal public void sleep(){…}

Additional Reading

1.Java Data Types:
http://java.sun.com/docs/books/tutorial/j
ava/nutsandbolts/datatypes.html

2.About inheritance:

va/cohttp://java.sun.com/docs/books/tutorial/ja
ncepts/inheritance.html

Practice

1. Create a n
following method

ew class Car with the
s:

public void start()
public void stop()
public int drive(int howlong)

rite another class and that
r and

call its methods. The result of each
hod call has to be printed using

The method drive() has to return the
total distance driven by the car for the
specified time. Use the following formula
to calculate the distance:

distance = howlong*60;

2. W CarOwner
creates an instance of the object Ca

met
System.out.println().

 Java Programming for Kids, Parents and Grandparents 39

ractice for Smarty Pants P

Create a subclass of Car named
JamesBondCar and override the method
drive() there. Use the following formula
to calculate the distance:

distance = howlong*180;

Be creative, print some funny messages!

Chapter 4. Java Building Blocks

ou can add any text comments to your program to explain

riting comments is to help other programmers
nderstand you code.

ith two slashes:

Y
what a particular line, method or a class is for. Sometimes people
forget why they have written the program this way. The other
reason for w
u

Program Comments

There are three different types of comments:

• If your comment fits in one line, start it w

// This method calculates the distance

urrounded with these
/* */

• Longer multi-line comments have to be s

symbols: and , for example:

 /* the next 3 lines store the current
 position of the Fish.
 */

Java comes with a special program that can extract

the most important comments like description of the

• javadoc
all comments from your programs into a separate help file. This
file can be used as a technical documentation for your
programs. Such comments are enclosed in symbols /** and
*/. Only
class or a method should be placed between these symbols.

 /** This method calculates the discount that depends
 on the price. If the price is more than $100,
 it gives you 20% off, otherwise only 10%.
 */

rom now on, I’lF l be adding comments to the code samples to give

w and where to use them. you a better idea ho

 Java Programming for Kids, Parents and Grandparents 41

aking Decisions with if Statements

If she is going to tell me this

 splits, and only the one
will

rue

M

W
–

e always make decisions in our life:
I’m going to answer that, otherwise I’ll do something else. Java

has an if statement that checks if a particular expression is true
or false.

Based on the result of this
expression, your program
xecutione

matching portion of the code
ork. w

For example, if an expression Do I
want to go to grandma? returns

, turn to the left, otherwise t
turn to the right.

If an expression returns true, JVM will execute the code between

e first curly braces, otherwise it goes to the the code after else
atemen ple, if a price is more than a hundred dollars,

therwise take only 10% off.

th
st t. For exam
give a 20% discount, o

L
th

// More expensive goods get 20% discount
if (price > 100){
 price=price*0.8;
 System.out.println("You’ll get a 20% discount”);
}
else{
 price=price*0.9;
 System.out.println("You’ll get a 10% discount”);
}
et’s modify the method dive() in the class Fish to make sure
at our fish will never dive below 100 feet:

ow just make a little change to the FishMaster – let it try to
ake our fish go deep under the sea:

un this program and it’ll print the following:

'm at 2 feet below the sea level

N
m

public class Fish extends Pet {
 int currentDepth=0;
 public int dive(int howDeep){
 currentDepth=currentDepth + howDeep;
 if (currentDepth > 100){
 System.out.println("I am a little fish and "
 + " can't dive below 100 feet");
 currentDepth=currentDepth - howDeep;
 }else{
 System.out.println("Diving for " + howDeep +
 " feet");
 System.out.println("I'm at " + currentDepth +
 " feet below the sea level");
 }
 return currentDepth;
 }
 public String say(String something){
 return "Don't you know that fish do not talk?";
 }
}

public class FishMaster {

 public static void main(String[] args) {

 }

R

Diving for 2 feet
I
Diving for 97 feet
I'm at 99 feet below the sea level
I am a little fish and can't dive below 100 feet
Good night, see you tomorrow

 Fish myFish = new Fish();

 // Try to have the fish go below 100 feet
 myFish.dive(2);
 myFish.dive(97);
 myFish.dive(3);

 myFish.sleep();

}

 Java Programming for Kids, Parents and Grandparents 43

ogical Operators

ometimes, to make a decision you may need to check more than
ne conditional expression, for example if the name of the state is
exas or California, add the state tax to the price of every item in
e store. This is an example of the logical or case – either Texas or
alifornia. In Java the sign for a logical or is one ore two vertical
ars. It works like this – if any of the two conditions is true, result
f the entire expression is true. In the following examples I use
se a variable of type String. This Java class has a method
quals(), and I use it to compare the value of the variable state
ith Texas or California:

f (state.equals("Texas") | state.equals("California"))

wo bars, and the
rst expression is true, the second expression won’t even be
hecked. If you place just a single bar, JVM will evaluate both

ted by one or two ampersands (&&) and
true if every part of it is true. For

 sales tax only if the state is New York and the
s more than $110. Both conditions must be true at the
ime:

e.equals("New York") && price >110)

r

f (state.equals("New York") & price >110)

irst expression is false, the
econd one won’t even be checke , because the entire expression

ere’s anoher example - the following two expressions will produce
the same result:

L

S
o
T
th
C
b
o
u
e
w

i

You can also write this if statement using two bars:

if (state.equals("Texas") || state.equals("California"))

The difference between the two is that if you use t
fi
c
expressions.

The logical and is represen
the whole expression is
example, charge the
price i
same t

if (stat

o

i

If you use double ampersand and the f
s d
will be false anyway. With the single ampersand both
expressions will be evaluated.

The logical not is represented by the exclamation point, and it
changes expression to the opposite meaning. For example, if you
want to perform some actions only if the state is not New York, use
this syntax:

if (!state.equals("New York"))

H

if (price < 50)

if (!(price >=50))

The logical not here is applied to the expression in parentheses.

Conditional operator

There is another flavor of an if statements called conditional
perator. This statement is used to assign a value to a variable o

based on an expression that ends with a question mark. If this
expression is true, the value after the question mark is used,
otherwise the value after the colon is assigned to the variable on
the left:

discount = price > 50? 10:5;

If the price is greater than fifty, the variable discount will get the
value of 10, otherwise the value of 5. It’s just a shorter replacement
of a regular if statement:

if (price > 50){
 discount = 10;
} else {
 discount = 5;
}

else if blocks. This time we’ll create a new class called
the method main() and also a

ethod that will have one argument - numeric test result.
epending on the number, it should print your grade like A, B, C,

es().

Using else if

You are also allowed to build more complex if statements with
everal s
ReportCard. This class has to have
m
D
D, or F. We’ll name this method convertGrad

 Java Programming for Kids, Parents and Grandparents 45

u
 char. You can also see that with the
if a number falls into some range. You

ult < 89

|

aking Decisions With switch Statement

he switch statement sometimes can be used as an alternative to
f le after the keyword switch is evaluated, and
r of the case statements:

eside using the else if condition, this example also shows yo

p

/

t pending
o

B
how to use variables of type
& operator you can check &

can not write simply if testResult between 80 and 89, but in
Java we write that at the same time testResult has to be greater
or equal to 80 and less then 89:

testResult >= 80 && testRes

Think about why we could not use the | operator here.

M

T
i . The variab
p ogram goes only to one

ublic class ReportCard {

**
This method takes one integer argument - the result of
he test and returns one letter A, B, C or D de
n the argument.
*/
 public char convertGrades(int testResult){
 char grade;

 if (testResult >= 90){
 grade = 'A';
 }else if (testResult >= 80 && testResult < 90){
 grade = 'B';
 }else if (testResult >= 70 && testResult < 80){

 public static void main(String[] args){

ReportCard rc = new ReportCard();

Grades(88);
ln("Your first grade is " +

 yourGrade);

out.println("Your second grade is " +

 }

 grade = 'C';
 }else {
 grade = 'D';
 }
 return grade;
 }

 rc.convert char yourGrade =
Syste ut.print m.o

e = rc.convertGrades(79); yourGrad
System.

 yourGrade);

}

D
th
b
th

J
h
v
e
o
c
i
b
s

H

C
c
s
a
c

public static void main(String[] args){

 ReportCard rc = new ReportCard();
 char yourGrade = rc.convertGrades(88);

 switch (yourGrade){

 case 'A':
 System.out.println("Exce
 break;

llent Job!");

 case 'B':
 System. .printl "Good
 break;

out n(Job!");

 case 'C':
 System.out.println("Need to work more!");

break ;
 case 'D':
 System.out.println("Chan
 break;
 }

ge your attitude!");

t the
reak statements this code will print all four lines, even though
e variable yourGrade will have only one value.

rt.

o not forget to put the keyword break at the end of each case –
e code has to jump out of the switch statement. Withou

ava switch statement
as a restriction – the
ariable that’s being
valuated must have
ne of these types:
har
nt
yte
ho

ow Long Variables Live?

lass declares a variable inside the method ReportCard grade
nvertGrades(). If you declare a variable inside any method,
ch variable is called local. This means that this variable is
ailable only for the code within this method. When the method

tomatically gets removed from memory.

o
u
v
ompletes, this variable au

}

 Java Programming for Kids, Parents and Grandparents 47

e the word scope to say how long a variable
 can say that the variables declared inside

mber variable. These variables are “alive”

nal classes, for example in our classes
) is using the class variable

.

created an instance of this class? Yes we
an, if this variable was declared with a keyword static. If

atic,
ou do not have to create an instance of this class to use it. Static
embers of a class are used to store the values that are the same

for all instances of the class.

For example, a method convertGrades() can be declared as
static in the class ReportCard, because its code does not use
member variables to read/store values specific to a particular
instance of the class. This is how you call a static method:

char yourGrade = ReportCard.convertGrades(88);

Here’s another example: there is a class Math in Java that contains
everal dozens of mathematical methods like sqrt(), sin(),
bs() and others. All these methods are static and you do not

Programmers also us
will liv , for example youe
a method have a local scope.

If a variable has to be reused by several method calls, or it has to
be visible from more than one method in a class, you should
declare such variable outside of any method. In class Fish,
urrentDepth is a mec

until the instance of the object Fish exists in memory, that’s why
they are also called instance variables. They could be shared and
reused by all methods of the class, and in some cases they can
ven be visible from extere

the statement System.out.println(
ut that was declared in the class Systemo

Wait a minute! Can we even use a member variable from the class
System if we have not
c
declaration of a member variable or a method starts with st
y
m

s
a
need to create an instance of the class Math to call them, for
example:

double squareRoot = Math.sqrt(4.0);

tructors
to create instances of objects in memory,

Special Methods: Cons

Java uses operator new
for example:

Fish myFish = new Fish();

Parentheses after the word Fish tell us that this class has some
method called Fish(). Yes, there are special methods that are

called constructors , and these methods have the following
features:

 construction of the

tor. If you do not create
constructor for the class, Java automatically creates during the

ment constructor. That’s
about such statement as

e
o

lues to
 variables of the class, for example the next version of class

ish has one-argument constructor that just assigns the

If
c
to

T

T
in

• Constructors are called only once during

object in memory.
• They must have the same name as the class itself.
• They do not return a value, and you do not even have to use

the keyword in constructor’s signature. void

ny class can have more than one construcA
a
ompilation time so-called default no-argu

 has never complained
c
why Java compiler
n w Fish(), even though the class Fish did not have any
c nstructors.

In general, constructors are used to assign initial va
member
F
argument’s value to the instance variable currentDepth for future
use.

N
a
in

F

public class Fish extends Pet {
 int currentDepth;

 Fish(int startingPosition){
 currentDepth=startingPosition;
 }
}

 a constructor with arguments has been defined in a class, you
an no longer use default no-argument constructor. If you’d like
 have a constructor without arguments - write one.

he Keyword this

he keyword this is useful when you need to refer to the
stance of the object you are in. Look at the next example:

ow the class FishMaster can create an instance of the Fish and
ssign the initial position of the fish. The next example creates an
stance of the Fish that is “submerged” 20 feet under the sea:

ish myFish = new Fish(20);

 Java Programming for Kids, Parents and Grandparents 49

rd this helps to avoid
ame conflicts, for example

class Fish {
 int currentDepth ;

epth){ Fish(int currentD
 this.currentDepth = currentDepth;
 }
}

A keywo
n
this.currentDepth refers to a
member variable
currentDepth, while the
currentDepth refers to the
argument’s value.

In other words, the instance of
the object Fish is pointing to
itself.

You’ll see another important example of using keyword this in
Chapter 6 in the section How to Pass Data Between Classes.

Arrays

Let’s say your program has to store names of the four game
players. Instead of declaring four different String variables, you
can declare one String array that has four elements.
Arrays are marked by placing square brackets either after the
variable name, or after the data type:

S

tring [] players;

r

t

h lines just tells Java compiler that you are planning to store
e as its
w es an

array that can store four String elements and
ssigns the values to the elements of this array:

o

S ring players[];

T ese

veral text strings in the array players. Each element h
ng from zero. The next sample actually creat

s
o n index starti

nce of an insta
a

layers = new String [4];

a";

y before assigning values to its
vance how many elements you

te on
ys at this point.

 this array, and you can always find out how
any ments are there:

t totalPlayers = players.length;

you know all the values that will be stored in the array at the
me when you declare it, Java allows you to declare and initialize

p

players[0] = "David";

niel"; players[1] = "Da
yers[2] = "Annpla

players[3] = "Gregory";

You must know the size of the arra
 not know in adelements. If you do

are going to have, you can not use arrays, but should look into
r Java classes, for example Vector, but let’s concentraothe

raar

Any array has an attribute called length that “remembers” the
number of elements in

 elem

in

If
ti
such array in one shot:

String [] players = {"David", "Daniel", "Anna", "Gregory"};

Imagine that the second player is a winner and you’d like to print
congratulations to this kid. If the players’ name are stored in an
array, we need to get its second element:

String theWinner = players[1];
System.out.println("Congratulations, " + theWinner + "!");

Here’s the output of this code:

Congratulations, Daniel!

Do you know why the second element has the index [1]? Of course
you do, because the index of the first element is always [0].

 Java Programming for Kids, Parents and Grandparents 51

ple are one-dimensional, because we
tore them sort of alues as a

matrix, we can create a two-dimensional array. Java allows
creation of multi-d cts in
arrays, and I’ll show you how to do this in Chapter 10.

Repeating A

eed to print congratulation to several winners.
ow in advance how many times this action has to be

eated - use a loop with a keyword for:

J
r
a
fo

P
th
(c
(c

e
v

rray of players in our examA

s in a row. If we wanted the store the v

imensional arrays. You can store any obje

ctions with Loops

Loops are used to repeat the same action multiple times, for
example we n
When you kn
rep

t

T
y
a
h

 int totalPla
 int counter;

 for (counter=0; counter <totalPlayers; counter++){

 String thePl
 System.out.

 }

yers = players.length;

 ayer = players[counter];
ntln("Congratulations,"+ p

ri
 thePlayer+"!");
VM executes ev en
eturns back to the first line of the loop to increment the counter
nd check the conditional expression. This code means the
llowing:

rint the value of as
e current value o 0
ounter=0), and he counter by one
ounter++). Keep doing this w is less than
otalPlayers (counter<totalPlayers).

oops - while. In these loops
imes to repeat the

tion, but you sti s see
ow we can congr will
nd when the valu the
alue of totalPla

ery line between the curly braces and th

the array element whose number is the same
f the counter. Start from the element number
 increment the value of t

hile the counter

here is another keyword for writing l
u do not have to know exactly how many to

c ll need to know when to end the loop. Let’
atulate players using the while loop that
e of the variable counter becomes equal to
yers:

ter 9 you’ll learn how to save data on the disks and how to
m back into computer’s memory. If you read game scores

ontinue

used to jump out of the loop when some
articular condition is true. Let’s say we do not want to print more

n in the here would

In Chap
read the
from the disk file, you do not know in advance how many scores
were saved there. Most likely you’ll be reading the scores using the
while loop.

You can also use two important keywords with loops: break and

.

 int
 int

 while (counter< totalPlayers){
 String thePlayer = players[counter];
 System.out.println("Congratulations, "
 + thePlayer + "!");
 counter++;

c

The keyword break is
p
than 3 congratulations, regardless of how many players we’ve got.
In the next example, after printing the array elements 0, 1 and 2,
the break will make the code go out of the loop and the program
will continue from the line after the closing curly brace.

The next code sample has a double equal sign in the if statement.
This means that you are comparing the value of the variable
ounter with number 3. A single equal sigc

mean assignment of the value of 3 to the variable counter.
Replacing == with = in an if statement is a very tricky mistake,
and it can lead to unpredictable program errors that may not be so
easy to find.

The keyword continue allows the code to skip some lines and
return back to the beginning of the loop. Imagine that you want

int counter =0;
while (counter< totalPlayers){

 if (counter == 3){
 break; // Jump out of the loop
 }
 String thePlayer = players[counter];

ayer+ "!");

}

 System.out.println("Congratulations, "+thePl
 counter++;

 totalPlayers = players.length;
 counter=0;

 }

 Java Programming for Kids, Parents and Grandparents 53

 back to the beginning of the loop:

 that starts with the
ord , for example:

to congratulate everyone but David – the keyword continue will
return the program

here is yet another flavor of the while loopT

w do

S
c
a
b

while (counter< totalPlayers){
 counter++;

 String thePlayer = players[counter];

 if "David"){ (thePlayer.equals(
 continue;
 }
 System.out.println("Congratulations, "+ thePlayer+ !");
}
do {
 // Your code goes here

 } while (counter< totalPlayers);
uch loops check an expression after executing the code between

urly braces, which means that code in the loop will be executed
t least once. Loops that start with the keyword while might not
e executed at all if the loop expression is false to begin with.

Ad i

d tional Reading

1. jGuru: Language Essentials. Short

ten
Course:
http://java.sun.com/developer/onlineTraining/JavaIntro/con
ts.html

2.Scope of variables:
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/scop
e.html

Practice

1. Create a new class named
TemperatureConverter that will have a
method with the following signature:

public String convertTemp
 (int temperature, char convertTo)

If the value of the argument convertTo is
F, the temperature has to be converted to
Fahrenheit, and if it’s C, convert it to
Celsius. When you’ll be calling this
method, put the value of the argument
char in single quotes.

2. Declare a method convertGrades() of
the class ReportCard as static and
remove the line that instantiates this class
from the method main().

Practice for Smarty Pants

line at the end of the loop as it was in the
example with break?

Have you noticed that in the example with
the keyword continue we’ve moved up
the line counter++;?
What would have happened if we left this

 Java Programming for Kids, Parents and Grandparents 55

raphical Calculator

ava comes with the whole bunch of classes that you’ll be

g to two main groups
f eating windows in Java:

WT library was available

k on, another
n ced. It also

r window controls. The
a omponents start with the letter J, for example
B

aster, and more convenient in Swing,
u ases our programs will run on computers with older
VMs that may not support Swing classes. You’ll see the examples
f working with AWT later in Chapter 7, but in this chapter we’ll

here is yet another set of Java classes which is a part of Eclipse
platform called Standard Widget Toolkit (SWT), but we won’t use it
in this book.

Packages and Import Statements

ava comes with many useful classes that are organized in

Chapter 5. A G

J
usin create graphical applications. Th

 that are used for cr
ere are

o classes (libraries)
AWT and Swing.

AWT and Swing

When Java was originally created, o

working with graphics. This library is a simple set of classes
nly A

for
e , , and others. PretButton TextField Label ty so

 more advanced library called Swing was introdu
li
a d
includes buttons, text fields, and othe
n mes of the Swing c
J utton, JTextField, JLabel, and so on.

Everything is a little better, f
b t in some c
J
o
create a calculator program using Swing.

T

J
packages. Some packages include classes responsible for drawing,
while other packages have classes to work with the Internet, and
so on. For example the class String is located in the package

lled java.lang, and the full name of the class String is

ava compiler knows where to find classes that are located in

e every time you use
, and to avoid this you can write import statements just once

ca
java.lang.String.

J
java.lang, but there are many other packages with useful
classes, and it’s your responsibility to let the compiler know where
the classes from your program live. For example, most of the Swing
classes live in one of the following two packages:

javax.swing
javax.swing.event

It would be annoying to write a full class nam
it
above the class declaration line, for example:

T
n
w

If
n
th
c

i

S
w
m

M

T
c

i ing.JFrame;
import

c r{
 JButton myButton = new JButton();
 JFrame myFrame = new JFrame();
}

mport javax.sw
 javax.swing.JButton;

lass Calculato

h atements will allow you to use the short class
m or JButton, and Java compiler will know

h se classes.

ple the star (asterisk) makes all
asses from the package javax.swing visible to your program:

ese import st
a es like JFrame

ere to look for the

 your need to use several classes from the same package, you do
ot have to list each of them in the import statement, just use
e wild card. In the following exam

l

mport javax.swing.*;

• A window or a frame that can be created using the class
JFrame.

till, it’s better to use separate import statements, so you can see
hat exactly the class is importing from each package. We’ll talk
ore about Java packages in Chapter 10.

ajor Swing Elements

hese are some of the major objects that Swing applications
onsist of:

 Java Programming for Kids, Parents and Grandparents 57

pon . Panels are created by
the class JPanel

buttons (JButton), text fields
(), lists (), and so on.

rrange all these buttons and
fields on a panel.

• An invisible panel or a pane that holds all these buttons, text
fields, labels, and other com ents

.

• Window controls like

JTextfield JList

• Layout managers that help a

Usually a program creates an instance of a JPanel and assigns
the layout manager to it. Then, it can create some window controls
and add them to the panel. After that, add the panel to the frame,
set the frame’s size and make it visible.

But displaying a frame is only half of the job, because the window
controls should know how to respond to various events, for
example a click on the button.

In this chapter we’ll learn how to display nice-looking windows,
and the next chapter is about writing code that will respond to
events that may happen with elements of this window.

Our next goal is to create a simple calculator that knows how to
add two numbers and display the result. Create a new project in
Eclipse named My Calculator and add a new class
SimpleCalculator with the following code:

C
lo

T
c

i
i

p

 // Create a panel
 JPanel windowContent= new JPanel();

 // Set a layout manager for this panel

mport javax.swing.*;
ort java.awt.FlowLayout; mp

ublic class SimpleCalculator {
in(String[] args) { public static void ma

 FlowLayout fl = new FlowLayout();
 windowContent.setLayout(fl);
 // Create controls in memory
 JLabel label1 = new JLabel("Number 1:");
 JTextField field1 = new JTextField(10);
 JLabel label2 = new JLabel("Number 2:");
 JTextField field2 = new JTextField(10);
 JLabel label3 = new JLabel("Sum:");
 JTextField result = new JTextField(10);
 JButton go = new JButton("Add");

 // Add controls to the panel
 windowContent.add(label1);
 windowContent.add(field1);
 windowContent.add(label2);
 windowContent.add(field2);
 windowContent.add(label3);
 windowContent.add(result);
 windowContent.add(go);

 // Create the frame and add the panel to it
 JFrame frame = new JFrame("My First Calculator");

 frame.setContentPane(windowContent);

 // set the size and make the window visible
 frame.setSize(400,100);
 frame.setVisible(true);
 }
}

ompile and run this program and it’ll display a window that
oks like this one:

 not be the best-looking calculator, but it’ll give us a
hance to learn how to add components and display a window. Iin
his may

 Java Programming for Kids, Parents and Grandparents 59

the next section we’ll try make it look better with the help of layout
managers.

Layout Managers

Some old-fashioned programming languages force you to set exact
coordinates and sizees of each window component. This works fine
if you know the screen settings (resolution) of all people that will
use your program. By the way, we call people who use your
programs users. Java has layout managers that help you arrange
omponents on the screen without assigning strict positions the

wing offers the following layout managers:

FlowLayout

dBagLayout

 needs to instantiate it, and
 container , for example to a panel as

r

 go to the next row, and so on.
 a user changes the size of the window, it may mess up the

 calculator window and resize
.awt.FlowLayout rearranges

c to
window controls. Layout managers will ensure that their screen
will look nice regardless of the window size.

S

•

• GridLayout

• BoxLayout

• BorderLayout

• CardLayout

• Gri

To use any layout manager

en assign this object to a
, a program

th
in the class SimpleCalculator.

Flow Layout

This layout arranges components in a window row by row. Fo
example, labels, text fields and buttons will be added to the first
imaginary row until there is room there. When the current row is
filled, the rest of the components will
If
picture. Just grab the corner of our
it. Watch how the manager java
controls as the size of the window changes.

In the next code sample, the keyword this represents an instance
of the object SimpleCalculator.

FlowLayout fl = new FlowLayout();
this.setLayoutManager(fl);

Well, the FlowLayout is not the best choice for our calculator.
Let’s try something different now.

rid Layout

 will stay the same. Our calculator has seven

ty):

G

The class java.awt.GridLayout allows you to arrange
components as rows and columns in a grid. You’ll be adding
components to imaginary cells of this grid. If the screen gets
resized, grid cells may become bigger, but the relative positions of

indow componentsw
components – three labels, three text fields and a button. We may
arrange them as a grid of four rows and two columns (one cell
tays emps

G

r dLayout gr = new GridLayout(4,2); i

You can also assign some horizontal and vertical space gaps
between the cells, for example five pixels:

GridLayout gr = new GridLayout(4,2,5,5);

fter minor changes in our calculator (they are highlighted below),

Create and compile a new class SimpleCalculatorGrid in the

A
our calculator will look a lot prettier.

project My Calculator.

 Java Programming for Kids, Parents and Grandparents 61

Run the program SimpleCalculatorGrid, and you’ll see this

:

import javax.swing.*;
import java.awt.GridLayout;

public class SimpleCalculatorGrid {
 public static void main(String[] args) {
 // Create a panel
 JPanel windowContent= new JPanel();

 // Set the layout manager for this panel
 GridLayout gl = new GridLayout(4,2);
 windowContent.setLayout(gl);

 // Create controls in memory

 JLabel label1 = new JLabel("Number 1:");
 JTextField field1 = new JTextField(10);
 JLabel label2 = new JLabel("Number 2:");
 JTextField field2 = new JTextField(10);
 JLabel label3 = new JLabel("Sum:");
 JTextField result = new JTextField(10);
 JButton go = new JButton("Add");

 // Add controls to the panel
 windowContent.add(label1);
 windowContent.add(field1);
 windowContent.add(label2);
 windowContent.add(field2);
 windowContent.add(label3);
 windowContent.add(result);
 windowContent.add(go);

 // Create the frame and add the panel to it
 JFrame frame = new JFrame(
 "My First Calculator");
 frame.setContentPane(windowContent);

 // set the size and display the window
 //frame.pack();
 frame.setSize(400,100);
 frame.setVisible(true);
 }
}

Try to resize this window - controls will grow with the window, but
eir relative positions will not change:

th

There is one more thing to remember about the grid layout – all
ells of the grid have the same width and height.

order Layout

lass java.awt.BorderLayout divides a window into a South,
est, North, East, and Center areas. The North area stays
lways on top of the window, the South at the bottom, the West is
n the left and the East is on the right.
or example, in the calculator that is shown the next page, a text
eld that displays numbers is located in the North area.

his is how you can create a BorderLayout and place a text field
ere:

orderLayout bl = new BorderLayout();
his.setLayoutManager(bl);

xtField txtDisplay = new JTextField(20);
s.add("North txtDisplay);

u do not have to put window controls in all five areas. If you
ly need North, Center, and South areas, the Center area will
come wider since you are not going to use the East and West.

ll use a BorderLayout a little la
d Calculator.java.

c

B

C
W
a
o
F
fi

T
th

B
t

JTe

", thi

Yo
on
be

I’ ter in the next version of our
calculator calle

Combining Layout Managers

Do you think that the GridLayout will allow you to create a
calculator window that looks like the one that comes with
Microsoft Windows?

 Java Programming for Kids, Parents and Grandparents 63

Unfortunately it won
alculator - the text

’t, because cells have different sizes in this
 field is much wider than the buttons. You

o combine layout managers in the new calculator, let’s do the

 Add a JTextField to the North area of the screen to display

et’s start with a little simpler version of the calculator screen that

c
could combine layout managers using panels that have their own
layout managers.

T
following:

9 Assign a border layout to the content panel of the frame.

9

the numbers.

9 Create a panel p1 with the GridLayout, add 20 buttons to it,

and then add p1 to the Center area of the content pane.

9 Create a panel p2 with the GridLayout, add four buttons to it,

then add p2 to the West area of the content pane.

L
will look like this:

Create a new class Calculator and run the program. Read the
program comments in the next code example to understand how it
works.

Class Calculator (part 1 of 2)

import javax.swing.*;
import java.awt.GridLayout;
import java.awt.BorderLayout;
public class Calculator {
 // Declaration of all calculator's components.
 JPanel windowContent;
 JTextField displayField;
 JButton button0;
 JButton button1;
 JButton button2;
 JButton button3;
 JButton button4;
 JButton button5;
 JButton button6;
 JButton button7;
 JButton button8;
 JButton button9;
 JButton buttonPoint;
 JButton buttonEqual;
 JPanel p1;

 // Constructor creates the components in memory
 // and adds the to the frame using combination of
 // Borderlayout and Gridlayout
 Calculator(){
 windowContent= new JPanel();

 // Set the layout manager for this panel
 BorderLayout bl = new BorderLayout();
 windowContent.setLayout(bl);

 // Create the display field and place it in the
 // North area of the window
 displayField = new JTextField(30);
 windowContent.add("North",displayField);

 // Create buttons using constructor of the
 // class JButton that takes the label of the
 // button as a parameter
 button0=new JButton("0");
 button1=new JButton("1");
 button2=new JButton("2");
 button3=new JButton("3");
 button4=new JButton("4");
 button5=new JButton("5");

 Java Programming for Kids, Parents and Grandparents 65

s multiple window components
 be laid out either horizontally (along the X-axis) or vertically

he FlowLayout manager, when the
 resized, its controls are not getting

rapped up. With BoxLayout, window controls can have different

Class Calculator (part 2 of 2)

ox Layout B

Class java.swing.BoxLayout allow
to
(along the Y-axis). Unlike with t
window with the BoxLayout is
w
sizes (this is not allowed in the GridLayout).

 button6=new
 button7=new

 JButton("6");
 JButton("7");

new JButton("8");
new JButton("9");

 // ones, and buttons with the point and the
 // equal sign
 p1 = new JPanel();
 GridLayout gl =new GridLayout(4,3);
 p1.setLayout(gl);

tton6);
 p1.add(button7);

 p1.add(buttonEqual);

 // Add the panel p1 to the center area

 }

String[] args) {
new

 button8=
 button9=
 buttonPoint = new JButton(".");
 buttonEqual=new JButton("=");

 // Create the panel with the GridLayout
 // that will contain 12 buttons - 10 numeric

 // Add window controls to the panel p1
 p1.add(button1);
 p1.add(button2);
 p1.add(button3);
 p1.add(button4);
 p1.add(button5);
 p1.add(bu

 p1.add(button8);
 p1.add(button9);
 p1.add(button0);
 p1.add(buttonPoint);

 // of the window
 windowContent.add("Center",p1);
 //Create the frame and set its content pane
 JFrame frame = new JFrame("Calculator");
 frame.setContentPane(windowContent);
 // set the size of the window to be big enough
 // to accomodate all controls
 frame.pack();
 // Finally, display the window
 frame.setVisible(true);

 public static void main(
 Calculator calc = Calculator();
 }
}

The next two lines of code set a box layout with vertical alignment
in a JPanel.

Pa
setLayout(new BoxLayout(p1, BoxLayout.Y_AXIS));

To make this code shorter, I do not declare a variable to store a
reference to the object BoxLayout, but rather create an instance
of this object and immediately pass it to the method setLayout()
as

Grid Bag Layout

In this section I’ll show you yet another way of creating the
calculator window using java.awt.GridBagLayout manager
instead of combining layouts and panels.

Our calculator has rows and columns, but in a grid layout, all of
the components must have the same size. This does not work for
our calculator because there is a text field on the top that is as
wide as tree numeric buttons.

thing else b f t have
r each cell separately. All constraints for a cell have

hen working with the grid layout you should create an instance
of the constraint object first, and then set the values to its
properties. After this is done, you can add the component to the
cell in your container.

J nel p1= new JPanel();

an argument.

The GridBagLayout is an advanced grid, that allows you to have a
grid with cells of different sizes. Class GridBagLayout works
together with another class called GridBagConstraints.
Constrains is no ut attributes o he cell, and you

 set them foto
to be set before placing a component in the cell. For example, one
of the constraint’s attributes is called gridwidth. It allows you to
make a cell as wide as several other cells.

W

 Java Programming for Kids, Parents and Grandparents 67

The next code sample is heavily sprinkled with comments to help
you understand how to use GridBagLayout.

// Set the GridBagLayout for the window’s content pane
 GridBagLayout gb = new GridBagLayout();
 this.setLayout(gb);

// Create an instance of the GridBagConstraints

 constr.x=0;
// y coordinate in the grid
 constr.y=0;

// this cell has the same height as other cells
 constr.gridheight =1;

// this cell is as wide as 6 other ones
 constr.gridwidth= 6;

// fill all space in the cell
 constr.fill= constr.BOTH;
// proportion of horizontal space taken by this
// component
 constr.weightx = 1.0;

// proportion of vertical space taken by this component
 constr.weighty = 1.0;
// position of the component within the cell
 constr.anchor=constr.CENTER;

 displayField = new JTextField();
// set constrains for this field
 gb.setConstraints(displayField,constr);

// add the text field to the window
 windowContent.add(displayField);

// You’ll have to repeat these lines for each component
// that you’d like to add to the grid cell
 GridBagConstraints constr = new GridBagConstraints();

//setting constraints for the Calculator’s displayField:

// x coordinate in the grid

Card Layout

Think of a deck of cards laying on top of each other, where you can
only see the top card. The java.awt.CardLayout manager can be
used if you need to create a component that looks like a tab folder.

When you click on a tab, the content of the screen changes. In fact,
all of the panels needed for this screen are already pre-loaded and
lay on top of each other. When the user clicks on a tab, the
program just “brings this card" on top and makes the rest of the
cards invisible.

Most likely you won’t use this layout, because the Swing library
includes a better component for windows with tabs. This
component is called JTabbedPane.

ure you can! You may set screen coordinates of each component

our code has to assign the coordinates of the
ft upper corner, the width, and the height of each window

els, height to 20, and plae it 100 pixels to the right
nd 200 pixels down from the top left corner of the window:

Button myButton = new Button("New Game");

Window Components

I’m not going to describe all Swing components in this book, but
you can find references to Swing online tutorial in the section
Additional Reading. This tutorial has detail explanations of all

Can I Create Windows Without Using Layouts?

S
while adding them to the window. In this case, your class has to
explicitly state that it won’t use any layout manager. Java has a
special keyword null that actually means “has no value”. We’ll
use this keyword quite often in the future, and in the following
example it means that there is no layout manager:

windowContent.setLayout(null);

But if you do this, y
le
component. The next example shows how you can set a button’s
width to 40 pix
a

J
myButton.setBounds(100,200,40,20);

 Java Programming for Kids, Parents and Grandparents 69

lculators use only JButton, JLabel
JTextField

9 JButton
9 JLabel
9 JCheckBox
9 JRadioButton
9 JToggleButto
9 JScrollPane
9 JSpinner
9 JTextField
9 JTextArea
9 JPasswordFie
9 JFormattedTe
9 JEditorPane
9 JScrollBar
9 JSlider
9 JProgressBar
9 JComboBox
9 JList

Pane

9 JToolTip
9 JTree
9 JViewPort
9 ImageIcon

You can also cr opup
windows, frames e
standard-looking d
JOptionPane).

Java comes with an excellent demo application that shows all
available Swing components in action. It’s located in the J2SDK
folder under demo\jfc\SwingSet2 Just open the file

wingSet2.html, a d you’ll see a screen similar to the next one.

Swing components. Our ca
nd , and here’s the list of what else is available: a

n

ld
xtField

9 JTabbed
9 JTable

eate menus (JMenu and JPopupMenu), p
inside other frames (JInternalFrame), use th
windows (JFileChooser, JColorChooser an

.

S n

Click on any image on the toolbar to see how this particular
Swing component works. You can also find Java code that was
used to create each window by selecting the tab Source Code. For
example, if you click on the fourth icon from the left (so-called
combobox), you’ll see a window that looks like this:

 Java Programming for Kids, Parents and Grandparents 71

Swing has so many different components to make your windows
pretty!

In this chapter we were creating creating Swing components
simply by typing the code without using any special tools. But
there are tools that allow you to select a component from a toolbar
nd drop it on the window. These tools will automatically generate

rden, and you
an find a reference to a Web page of this product in the section
dditional Reading.

w a window can respond to the
user’s actions.

a
proper Java code for Swing components. One of the free Graphic
User Interface (GUI) designers that allow easy creation of Swing
and SWT components is called jigloo from CloudGa
c
A

In the next chapter you’ll learn ho

Additional Reading

1.Swing Tutorial:
http://java.sun.com/docs/books/tutorial/uiswing/

2. Class JFormattedTextField:
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JFormatte
dTextField.html

3.SWT tutorial and articles:
http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/pl
atform-swt-home/SWT_Resources.html

4.Jigloo GUI builder:
http://www.cloudgarden.com/jigloo/index.html

Practice

2. Read about the class
JFormattedTextField on the web and

1.Modify the class Calculator.java to
add the buttons +, -, /, and *. Add these
buttons to the panel p2, and place the
panel in the East area of the content pane.

change the code of the calculator to use
this class instead of the JTextField. The

ght-aligned field like goal is to create a ri
e. real calculators hav

 Java Programming for Kids, Parents and Grandparents 73

Practice for Smarty Pants

Replace 10 lines that start from

Modify the class Calculator.java to

llows:

0];

with a loop that creates the buttons and
store them in this array.

keep all numeric buttons in the 10-
element array declared as fo

Buttons[] numButtons= new Buttons[1

button0= JButton("0");

new

Hint: peek into the code of the Tic-Tac-Toe
game in Chapter 7.

running program: a user

b browser decides to re-
 on the

tons of our calculator from Chapter 5, but these buttons were
 ready to respond to your actions yet.

ach window component can process a number of events, or as we

r
xample use cursor over the
a here exactly the mouse
o button as long as it was
n to register the
u er hand, this
s .

a with the
c L rocess button-click events. All these
s s are special Java classes called interfaces.

Chapter 6. Window Events

Various events may happen to a

clicks on a button in a window, the We
aint the window, and so on. I’m sure you’ve tried to clickp

but
otn

E
say, listen to these events. Your program has to register window
components with Java classes called listeners. You should make
components listen to only those events they are interested in. Fo

, when a person moves the moe
c lculator button, it’s not important w

 thep inter was when the person pressed
o ot need

ton with the MouseMotionListener. On the oth
the button’s surface. That’s why you do n

b t
li tener is handy for all kinds of drawing programs

Calcul tor’s buttons should register themselves
A tion

ner
istener that can p

li te

 Java Programming for Kids, Parents and Grandparents 75

Interfaces

Mos

r
t of the classes define methods that perform various actions,
example will react to button clicks, will react to mouse

ovements, and so on. A combination of such actions is called a

t writing actual code that implements these actions,

fo
m
class behavior.

Interfaces are special classes that just name a set of particular
ctions withoua

for example:

A
d
M
m
in
in
fo

interface MouseMotionListener {
 void mouseDragged(MouseEvent e);
 void mouseMoved(MouseEvent e);
}

eclared in the interface called
ct when the
lement this

s you can see, the methods mouseDragged() and mouseMoved()
o not have any code – they are just d
ouseMotionListener. But if your class needs to rea

 it has to impouse is being moved or dragged,
terface. The word implements means that this class will definitely
clude methods that might have been declared in this interface,
r example:

Y

A
y
a

w
is
o
im
s
a
J
y
s
p
c
s

A
n

import java.awt.event.MouseMotionListener;

ionListener{ class myDrawingPad implements MouseMot

 // your code that can draw goes here

 mouseDragged(MouseEvent e){
 // your code that has to be performed when
 // the mouse is being dragged goes here
 }
 mouseMoved(MouseEvent e){
 // your code that has to be performed when
 // the mouse is being moved goes here
 }
}
o

vement.

ample it may

u may be wondering, why even bother creating interfaces
ithout writing code there? The reason is that once the interface
 created, it could be reused by many classes. For example, when
ther classes (or JVM itself) see that the class myDrawingPad

plements the interface MouseMotionListener, they know for
ure that this class will definitely have methods mouseDragged()
nd mouseMoved(). Every time when a user moves the mouse,
VM will call the method mouseMoved()and execute the code that
ou wrote there. Imagine if a programmer Joe decides to name
uch method mouseMoved(), Mary calls it movedMouse(), and Pete
refers mouseCrawling()? In this case the JVM would be
onfused and wouldn’t know which method to call on your class to
ignal about the mouse mo

 Java class can implement multiple interfaces, for ex
eed to respond to mouse movements and to a button click:
class myDrawingProgram implements
 MouseMotionListener, ActionListener
{

 //You have to write the code for each method that
 // has been defined in both interfaces here

}

fter getting comfortable with the interfaces that come with Java,
ou’ll be able to create your own interfaces, but this is an
dvanced topic and let’s not even go there at this time.

 Java Programming for Kids, Parents and Grandparents 77

ack to our calculator. If you’ve completed assignments
 is done. Now we’ll create

n some actions when the
tually, we could have added

.java,
u parts in
e

d it must
e ner interface that declares

n VM calls
et this interface whenever
s

l

Action Listener

et’s get bL

from the previous chapter, the visual part
orm a other class-listener that will perf

 Acuser clicks on one of the buttons.
the code processing click events to the class Calculator

t good programmers always keep visual and processing b
s parate classes.

We’ll me a second class Calcna ulatorEngine, an
implem nt a java.awt.ActionListe

ly one method - actionPerformed(ActionEvent). Jo
this m hod on the class that implements
the per on clicks on the button.

P ease create the following simple class:

import java.awt.event.ActionListener;
 class CalculatorEngine implements ActionListener { public

}
you try to compile this class (or just save it in Eclipse), you’ll get
an error message saying that the class must implement the
method actionPerformed(ActionEvent e). Let’s fix this error:

If

T
m
u
s
d

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
public class CalculatorEngine implements
 ActionListener {

public void actionPerformed(ActionEvent e){
 // An empty method is also allowed here,
 // even though nothing is going to happen when
 // the JVM calls it
 }
}
he next version of this class will d e m the
ethod actionPerformed(). You can display any messages

its method
h . For example, the class CalculatorEngine
i

isplay a m ssage box fro

sing the class JOptionPane and
owConfirmDialog()

box:splays the following message

There are different versions of the method sh

d we are going to use the one with four ar
owConfirmDialog(),
guments. In the code

essage box does not have the
rent window, the second argument contains the title of the

self, and the fourth
be included in the box

N tton OK will be

C

an
below, null means that this m
pa
message box, then goes the message it

(s) to argument allows you to select a button
LAI _MESSAGE means that only a single bu(P

displayed in the message box).

In
v
m

R

W
a
re
C
th
b

C
b

F
J

import
rt
 java.awt.event.ActionListener;

impo
mpo

 java.awt.event.ActionEvent;
rt javax.swing.JOptionPane;

ublic class CalculatorEngine implements
ActionListener {

i
p

 public void actionPerformed(ActionEvent e){
 JOptionPane.showConfirmDialog(null,
 "Something happened...",
 "Just a test",
 JOptionPane.PLAIN_MESSAGE);
 }
}
od if you
gister (or link) the calculator’s buttons with the class

alculatorEngine calcEngine = CalculatorEngine();

alculatorEngine. Compile and run the class Calculator now,

 the next section I’ll explain you how to compile and run the next
ersion of our calculator that will display the Something Happened
essage box.

egistering Components with ActionListeneter

ho and when will call the code that we wrote in the method
ctionPerformed()? The JVM itself will call this meth

alculatorEngine! Just add the following two lines at the end of
e constructor of the class Calculator.java to register the

utton zero with our action listener:

new
utton0.addActionListener(calcEngine);

rom now on, every time when the user clicks on the button0,
VM calls the method actionPerformed() on the object

 Java Programming for Kids, Parents and Grandparents 79

re not
ur action listener. Keep adding similar lines

What’s the Source of an Event?

The next step is to make our listener a little smarter – it’ll display
different message boxes, depending on which button was pressed.
When an action event happens, JVM calls the method
actionPerformed(ActionEvent) on your listener class, and it
provides a valuable information about the event in the argument
ActionEvent. You can get this information by calling appropriate
methods on this object.

Casting

In the next example we are finding out which button has been
pressed by calling the method getSource() of the class
ActionEvent – the variable e is a reference to this object that lives
somewhere in computer’s memory. But according to Java
documentation, this method returns the source of the event as an
instance of type Object, which is a superclass of all Java classes
including window components. It’s done this way to make a
universal method that works for all components. But we know for
sure, that in our window only buttons can possibly be the reason
of the action event! That’s why we cast the returned Object to the
shape of a JButton by placing a type (JButton) in parentheses
in front of the method call:

JButton clickedButton = (JButton) evt.getSource();

We declare a variable of type JButton on the left of the equal
sign, and even though the method getSource() returns the data
of type Object, we say to JVM: Don’t worry, I know for sure that
I’m getting an instance of a JButton.

and click on the button zero – it’ll display the Something happened
message box! Other buttons remain silent because they a
egistered yet with or

to bring all buttons to life:

button1.addActionListener(calcEngine);
button2.addActionListener(calcEngine);
tton3.addActionListener(calcEngine); bu

button4.addActionListener(calcEngine);
 …

Only after performing casting from Object to JButton we are

lowed to call the method getSource() that belongs to a class
Button.

F

al
J

m

B
b

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

implements ActionListener
{

 // Get the source of this action

import javax.swing.JOptionPane;
import javax.swing.JButton;
public class CalculatorEngine

 public void actionPerformed(ActionEvent e){

 Pane.showConfirmDialog(null,
 "You pressed " + clickedButtonLabel,

 }
}

 JButton clickedButton=(JButton) e.getSource();
 // Get the button's label

String clickedButtonLabel =
 clickedButton.getText();

// Concatenate the button's label
// to the text of the message box
JOption

 "Just a test",
 JOptionPane.PLAIN_MESSAGE);

or example, if you press the button five, you’ll see the following
ge box: essa

ut what if window events are produced not only by buttons, but
y some other components as well? We do not want to cast every

 Java Programming for Kids, Parents and Grandparents 81

object to ! For these cases you should use a special Java
op the proper casting. The
next example first checks what type of object caused the event,
and then performs casting to either JButton or JTextField:

Our calculator has to execute different portions of the code for
ea do this.

How to Pass Data Between Classes

Actually, when you press a numeric button on the real calculator,
it does not show a message box, but rather displays the number in
the text field on top. Here’s the a new challenge – we need to be
able to reach the attribute displayField of the class Calculator
from the method actionPerformed() of the class
CalculatorEngine. This can be done if we define in the class
CalculatorEngine a variable that will store a reference to the
instance of the object Calculator.

We are going to declare a constructor in the next version of the
class CalculatorEngine. This constructor will have one argument

JButton
rm erator called instanceof to perfo

public void actionPerformed(ActionEvent evt){

myDisplayField=null; JTextField
 JButton clickedButton=null;

 Object eventSource = evt.getSource();

 if (eventSource instanceof JButton){

utton) eventSo clickedButton = (JB urce;
 }else if (eventSource instanceof JTextField){

myDisplayField = (JTextField)eventSource;
 }
}

ch button, and the next code snippet shows you how to

public void actionPerformed(ActionEvent e){

 oes here
 s){

ere
 }

}

 Object src = e.getSource();

 if (src == buttonPlus){
 // Code that adds numbers g

 } else if (src == buttonMinu
 // Code that subtracts numbers goes here
 }else if (src == buttonDivide){

 // Code that divides numbers goes here
 } else if (src == buttonMultiply){
 // Code that multiplies numbers goes h

f type Calculator. Don’t be surprised, method arguments can
ave data types of the classes that were created by you!

JVM executes the constructor of the CalculatorEngine instance
during creation of this class in memory. The class Calculator
instantiates the CalculatorEngine, and passes to the engine’s
constructor the reference to itself:

o
h

CalculatorEngine calcEngine = new CalculatorEngine(this);

This reference contains a location of the calculator’s instance in
memory. The engine’s constructor stores this value in the member
variable parent, and eventually will use it in the method
actionPerformed() to access the calculator’s display field.

parent.displayField.getText();
…
parent.displayField.setText(dispFieldText +
 clickedButtonLabel);

These two lines where taken from the next code sample.

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JButton;

public class CalculatorEngine implements ActionListener {

 Calculator parent; // a reference to the Calculator

 // Constructor stores the reference to the
 // Calculator window in the member variable parent
 CalculatorEngine(Calculator parent){
 this.parent = parent;
 }

 public void actionPerformed(ActionEvent e){
 // Get the source of this action
 JButton clickedButton = (JButton) e.getSource();

 // Get the existing text from the Calculator’s

 // display field
 String dispFieldText = paren

xt();

t.displayField.getText();

 // Get the button's label
 String clickedButtonLabel = clickedButton.getTe

 parent.displayField.setText(dispFieldText +
 clickedButtonLabel);
 }
}

 Java Programming for Kids, Parents and Grandparents 83

F

W
W
a
d
s

L
s

When you declare a variable for storing a reference to
the instance of a particular class, this variable has to
have either the data type of this class or of one of its
superclasses.

Every class in Java is inherited from the class Object,
and if the class Fish is a subclass of a Pet, each of
these lines is correct:

O

Fish myFish = new Fish();
Pet myFish = new Fish();
bject myFish = new Fish()
ini

et’s come up with some rules (an algorithm) of how our calculator
ould work:

1. The user enters all the digits of the first number.

2. If the user hits one of the action buttons +, -, / or * , then

store the first number and selected action in member
variables, and erase the number from the display text field.

3. The user enters the second number and hits the button

equals .

4. Convert the String value from the text field into a numeric

type double to be able to store large numbers with a decimal
point. Perform selected action using this value and the
number stored in the variable from step 2.

y the result from step 4 in the text field and store this
value in the variable tha

e’ll program all these action
hile reading the code below, remember that the method
ctionPerformed() will be called after each button click and the
ata between these method calls will be stored in the variables
electedAction and currentResult.

shing Calculator

h

5. Displa

t was used in step 2.
s in the class CalculatorEngine.

Class CalculatorEngine (part 1 of 2)

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JButton;

public class CalculatorEngine
 implements ActionListener {

 Calculator parent; //a reference to Calculator window
 char selectedAction = ' '; // +, -, /, or *

 double currentResult =0;

// Constructor stores the reference to the Calculator
// window in the member variable parent
 CalculatorEngine(Calculator parent){
 this.parent = parent;
 }

 public void actionPerformed(ActionEvent e){

 // Get the source of this action
 JButton clickedButton = (JButton) e.getSource();
 String dispFieldText=parent.displayField.getText();

 double displayValue=0;

 //Get the number from the text field
 // if it’s not empty
 if (!"".equals(dispFieldText)){
 displayValue= Double.parseDouble(dispFieldText);
 }
 Object src = e.getSource();

 // For each action button memorize selected
 // action +, -, /, or *, store the current value
 // in the currentResult, and clean up the display
 // field for entering the next number

 Java Programming for Kids, Parents and Grandparents 85

 if (src == parent.buttonPlus){
 selectedAction = '+';
 currentResult=displayValue;
 parent.displayField.setText("");
 } else if (src == parent.buttonMinus){
 selectedAction = '-';
 currentResult=displayValue;
 parent.displayField.setText("");
 }else if (src == parent.buttonDivide){
 selectedAction = '/';
 currentResult=displayValue;
 parent.displayField.setText("");
 } else if (src == parent.buttonMultiply){
 selectedAction = '*';
 currentResult=displayValue;
 parent.displayField.setText("");
 } else if (src == parent.buttonEqual){
 // Perform the calculations based on selectedAction
 // update the value of the variable currentResult
 // and display the result
 if (selectedAction=='+'){
 currentResult+=displayValue;
 // Convert the result to String by concatenating
 // to an empty string and display it
 parent.displayField.setText(""+currentResult);
 }else if (selectedAction=='-'){
 currentResult -=displayValue;
 parent.displayField.setText(""+currentResult);
 }else if (selectedAction=='/'){
 currentResult /=displayValue;
 parent.displayField.setText(""+currentResult);
 }else if (selectedAction=='*'){
 currentResult*=displayValue;
 parent.displayField.setText(""+currentResult);
 }
 } else{
 // For all numeric buttons append the button's
 // label to the text field
 String clickedButtonLabel=
 clickedButton.getText();
 parent.displayField.setText(dispFieldText +
 clickedButtonLabel);
 }
 }
}

Class CalculatorEngine (part 2 of 2)

The final version of the calculator window will look like this:

The class

1. e
2. e
3. P s
4. g

eve
Here’s e

Calculator performs the following steps:

Cr ate and displays all window components.
Cr ate an instance the event listener CalculatorEngine.

s to the engine a reference to the itself . a
Re isters with this listener all components that can generate

nts.
 final version of the class th Calculator:

JButton buttonMinus=new JButton("-");

impo
import java.awt.GridLayout;
import java.awt.BorderLayout;

w components
 JButton button0=new JButton("0");
 JButton button1=new JButton("1");

ton button2
button3
button4
button5
button6 JButton("6");
 button7
 button8
 button9
 buttonP

rt javax.swing.*;

public class Calculator {
 // Declare and instantiate windo

 JBut =new JButton("2");
 JButton
 JButton

=new JButton("3");
=new JButton("4");
new JButton("5"); JButton =

 JButton =new
 JButton
 JButton

=new JButton("7");
new JButton("8"); =

 JButton
 JButton

=new JButton("9");
oint = new JButton(".");

"); JButton buttonEqual=new JButton("=
us=new JButton("+"); JButton buttonPl

 JButton buttonMinus=new JButton("-");

part 1 of 3)

Class Calculator (

 Java Programming for Kids, Parents and Grandparents 87

Class Calculator (part 2 of 3)

 JButton buttonDivide=new JButton("/");
 JButton buttonMultiply=new JButton("*");
 JPanel windowContent = new JPanel();
 JTextField displayField = new JTextField(30);

 // Constructor
 Ca
 // Set the layout manager for this panel

lculator(){

 BorderLayout bl = new BorderLayout();
(bl);

 // Add the display field to the top od the window

 p1.add(button6);
 p1.add(button7);
 p1.add(button8);
 p1.add(button9);
 p1.add(button0);
 p1.add(buttonPoint);
 p1.add(buttonEqual);

// Add the panel p1 to the center area of the window
 windowContent.add("Center",p1);

lus, Minus, Divide and Multiply
 JPanel p2 = new JPanel();

 windowContent.setLayout

 windowContent.add("North",displayField);

 // Create the panel with the GridLayout
 // that will contain 12 buttons - 10 numeric ones, and
 // buttons with the point and the equal sign

 JPanel p1 = new JPanel();
 GridLayout gl =new GridLayout(4,3);
 p1.setLayout(gl);

 p1.add(button1);
 p1.add(button2);
 p1.add(button3);
 p1.add(button4);
 p1.add(button5);

 // Create the panel with the GridLayout
 // that will contain 4 action buttons -
 // P

 GridLayout gl2 =new GridLayout(4,1);
 p2.setLayout(gl2);
 p2.add(buttonPlus);
 p2.add(buttonMinus);
 p2.add(buttonMultiply);

Class Calculator (part 3 of 3)

Now compile the project and run the class Calculator. It works
almost the same as the real world calculators.

Congratulations! This is your first program that can be used by
many people – give it as a gift to your friends.

For better understanding of how this program works, I recommend
you to get familiar with debugging of programs. Please read about
debugger in Appendix B, and then come back again.

 p2.add(buttonDivide);

 the east area of the window
 windowContent.add("East",p2);

 // Create the frame and add the content pane to it
 JFrame
 frame.setContentPane(windowContent);

 // set the size of the window to be big enough to
 // accomodate all window controls
 frame.pack();

 // Display the window
 frame.setVisible(true);

tantiate the event listener and
ister each button with it

 CalculatorEngine calcEngine = new

 button
 button
 button
 button
 butto
 butto
 button6.addActionListener(calcEngine);
 button7.addActionListener(calcEngine);
 button8.addActionListener(calcEngine);
 button9.addActionListener(calcEngine);

ener(calcEngine);
 buttonPlus.addActionListener(calcEngine);
 buttonMinus.addActionListener(calcEngine);
 buttonDivide.addActionListener(calcEngine);

 buttonMultiply.addActionListener(calcEngine);
 buttonEqual.addActionListener(calcEngine);
 }

 p bl

 Calculator
 }
 }

 // Add the panel p2 to

 frame = new JFrame("Calculator");

 // Ins
 // reg

 CalculatorEngine(this);

0.addActionListener(calcEngine);
1.addActionListener(calcEngine);
2.addActionListener(calcEngine);
3.addActionListener(calcEngine);
4.addActionListener(calcEngine);
5.addActionListener(calcEngine);
n
n

 buttonPoint.addActionList

u ic static void main(String[] args) {
// Instantiate the class Calculator

calc = new Calculator();

 Java Programming for Kids, Parents and Grandparents 89

ome

hese are some other Java listeners from the package java.awt
at are good to know:

cus listener will send a signal to your class when a
ponent gains or loses focus. For example, we say that

 text field has focus, if it has a blinking cursor.
m listener reacts on selection of items in a list or a

y listener responds to keyboard buttons.

eclare.

Interface Methods to implement

S Other Event Listeners

T
th

• Fo
com
the

• Ite
combobox (dropdown box).

• Ke
• Mouse listener responds when mouse is clicked, or it

enters/leaves a component’s area on the window.
• Mouse movement listener tells you if the mouse is being

moved or dragged. To drag means moving the mouse
while pressing its button.

• Window listener gives you a chance to catch the
moments when the user opens, closes, minimizes or
activates the window.

In the next table you’ll see the name of the listener interfaces, and
the methods that these interfaces d

FocusListener

ItemListener

KeyListener

MouseListener

focusGained(FocusEvent)
focusLost(FocusEvent)

itemStateChanged(ItemEvent)

keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

mouseClicked(MouseEvent)
mouseEntered(MouseEvent)

windowDeiconified(WindowEvent)
windowIconified(WindowEvent)
windowOpened(WindowEvent)

MouseMotionListener

mouseExited(MouseEvent)
mousePressed(MouseEvent)
mouseReleased(MouseEvent)

mouseDragged(MouseEvent)

WindowListener

mouseMoved(MouseEvent)

windowActivated (WindowEvent)
windowClosed(WindowEvent)
windowClosing(WindowEvent)
windowDeactivated (WindowEvent)

For
focusGained() and focusLost(). This means that even if your
lass is interested only in processing of the events when a

me . This may be annoying, and Java provides
pecial adapter classes for each listener to make event processing

e write code in the method
indowClosing() and also include six empty methods.

h are classes that have

The rest is easy – just register this class as an event listener in the
window class:

 example, the FocusListener interface declares two methods:

c
particular field gains the focus, you also must include the empty

thod focusLost()
s
easier.

How to Use Adapters

Let’s say you need to save some data on the disk when the user
closes the window. According to the table above, the class that
implements WindowsListener interface has to include seven
methods. This means that you’ll hav
w

he package java.awt has adapters, whicT

already implemented all required methods (these methods are
empty inside). One of such classes is called WindowAdapter. You
can extend the class that has to process events from
WindowAdapter and just override the methods you are interested
in, for example the method windowClosing().

MyEventProcessor myListener = new MyEventProcessor();
addWindowListener(myListener);

We can achieve the same result using so-called anonymous inner
classes, but this topic is a little too complicated for this book.

class MyEventProcessor extends java.awt.WindowsAdapter {
 public void windowClosing(Win vent e) {
 // your code that saves the

dowE
data on a disk

 // goes here.
 }
}

 Java Programming for Kids, Parents and Grandparents 91

Additional Reading

Writing Event Listeners:
http://java.sun.com/docs/books/tutorial/uiswing/events/

Practice

 Try to divide a number by zero using our

word Infinity. Modify the class
CalculatorEngine to display a message
Can’t divide by zero if the user clicks on
the button Divide when display field is
empty.

calculator - the display field shows the

Practice for Smarty Pants

of the class S

Modify the class CalculatorEngine to
not allow entering more than one period
in the number.

Hint: read about the method indexOf()

tring to find out if the
display field already has one period.

Chapter 7. The Tic-Tac-Toe Applet

When you go online to your favorite Web site, the

chances are that some of these games or other programs were
written in Java using so-called applets. These special applications
live and run inside the Web browser’s window. Web browsers
understand a simple mark-up language called HTML, which
allows you to insert special tags (marks) in the text files to display
them nicely in the browsers. Besides the text, you can include in
HTML file a special tag <applet> that will tell the browser where
to find and how to display a Java applet.

ava applets are downloaded to your computer from the Internet J

as a part of a Web page, and the browser is smart enough to start
its own JVM to run these applets.

this chIn apter you’ll learn how to create applets on your

eb pages contain
ava applets or not, but they want to be sure that their computers
ill not be harmed by some bad guys who added a nasty applet to
e page. That’s why the applets were designed with the following
strictions:

computer, and Appendix C explains how to publish your Web
pages on the Internet so other people can also use them.

People browse the Internet without knowing if w
J
w
th
re

 Java Programming for Kids, Parents and Grandparents 93

r disk unless you have a
sk that gives them such

called TicTacToe. Now you need create the HTML file with
formation about it. First create the text file called

d>. This is how the
le TicTacToe.html can look like:

You can place the tags either in the same line like we did with the
tags <Title> and </Title>, or in separate lines. Open this file in
your Web browser using its menus File and Open. The blue title
bar of the window will read My First Web Page…, and inside the
page you’ll see the words My Tic-Tac-Toe game is coming soon…:

• Applets can not access files on you
special certificate file on your di
permission.

• Applets can only connect to the computer they where

downloaded from.

• Applets can not start any other program located in your

computer.

To run an applet you’ll need a Java class written in a special way,
an HTML text file that contains the tag <applet> pointing to this
class, and a Web browser that supports Java. You can also test
applets in Eclipse or using a special program called appletviewer.
But before learning how to create applets, let’s spend 15 minutes
to get familiar with some HTML tags.

Learning HTML in 15 Minutes

Imagine for a moment that you’ve written and compiled the game
applet
in
TicTacToe.html (by the way, Eclipse can create text files also).
HTML files have names that end either with .html or .htm. Inside,
they usually have the sections header and body. Most of the
HTML tags have the matching closing tags that start with a
forward slash, for example <Head> and </Hea
fi

<HTML>
<Head>
<Title>My First Web Page</Title>
</Head>
<BODY>
 My Tic-Tac-Toe game is coming soon…
</BODY>
</HTML>

Now change this file to add the tag for the Tic-Tac-Toe applet to
this file:

N

<
<BODY>

 height=250>

<
<

HTML>

 Here is my Tic-Tac-Toe game:
 <APPLET code=”TicTacToe.class” width=300

 </APPLET>
/BODY>
/HTML>

ow the screen looks different:

 Java Programming for Kids, Parents and Grandparents 95

No wonder, since the Web browser could not find th
TicTacToe.class, it just show ngle. We’ll cre

e
s a gray recta ate this

lass a little later in this chapter.

TML tags are surrounded by angle brackets, and some of the tags
he tag <APPLET> in our example

ses the following attributes:

• code - it’s the name of the applet’s Java class.

• width – has the width in pixels of the rectangular area on the

screen that will be used by the applet. Images on the computer
screen are made out of tiny dots that are called pixels.

• height - has the height of the area to be used by the applet.

If a Java applet consists of multiple classes, put all of them into
one archive file using the jar program that comes with JDK. And if
you do so, the attribute archive must have the name of this
archive. You can read about jars in Appendix A.

c

H
may have additional attributes. T
u

Writing Applets Using AWT

hy use AWT for writing applets if the Swing library is better?
an we write applets using Swing classes? Yes we can, but there is

but might not support the Swing classes that are included in your
applet. Of course the users may download and install the latest
JVM, and there are special HTML converters that will change the
HTML file to point their browsers to this new JVM, but do you
really want to ask users to do this? After your Web page is
published on the Internet, you do not know who might be using it.
Imagine an old guy somewhere in a desert with a 10 year old
computer – he’ll just leave your page instead of going through all
these installation troubles. Imagine that our applet helps to sell
games online, and we do not want to loose this guy – he might be
our potential customer (people in deserts also have credit cards). ☺

Use AWT if you’re not sure what kind of Web browsers your users
have.

r choice is to ask your users to download special
d configure their browsers to use the plugin

W
C
something you need to know about.

Web browsers come with their own JVMs, which support AWT,

Actually, the othe
Java plugin, an
instead of JVM that came with their browser. You can read more
about this option ot the following Web site:
http://java.sun.com/j2se/1.5.0/docs/guide/plugin/.

 Java Programming for Kids, Parents and Grandparents 97

How to W

Java AWT
java.ap

•

•

•

•

rite AWT Applets

applets have to be inherited from the class
.App , for eplet let xample:

U
b
th
s
a
a
m
T

 •

E
e
o
o
G
o
d

class TicT

}

acToe extends java.applet.Applet {
portant events happen, for example the

destroy().

s loaded by the browser. It’s
called only once, so it plays a role similar to constructors in
regular Java classes.

start() is called right after the init(). It is also called if a
user returns to a Web page after visiting another page.

paint() is called when the applet’s window needs to be
displayed or refreshed after some activity on the screen. For
example, the applet is overlapped with some other window and
the browser needs to repaint it.

stop() is called when a user leaves the Web page containing
the applet.

destroy() – is called when the browser destroys the applet.
You’d write code in this method only if the applet uses some
other resources, for example it holds a connection to the

 Here’s a code
f the applet that displays the words Hello World. This applet has

 to draw the text Hello World.

nlike Java applications, applets do not need the method main()
ecause the Web browser will download and run them as soon as
ey see the tag <applet> in the Web page. The browser also sends

ignals to applets when im
pplet is starting, re-painting, and so on. To make sure that the
pplet reacts to these events, you should program special callback
ethods: init(), start(), paint(), stop(), and
he browser’s JVM will call these methods in the following cases:

init() is called when the applet i

computer it was downloaded from.

ven though you do not have to program all of these methods,
ach applet must have at least init() or paint().

nly one method paint() that receives an instance of the object
raphics from the browser’s JVM. This object has a whole bunch
f methods for painting. The next example uses the method
rawString()

e Run window select Java
e button New, and enter

elloApplet in the field Applet Class.

ow start you Web browser and open the file Hello.html using
e menus File and Open.

e screen should look like this:

Create this class in Eclipse. Then in th
, press thApplet in the top left corner

H

To test this applet in the Web browser, create the file Hello.html
in the same folder where you applet class is located:

N
th

Th

public class HelloApplet extends java.applet.Applet {
 public void paint(java.awt.Graphics graphics) {
 graphics.drawString("Hello World!", 70, 40);
 }
}

<HTML>
 <BODY>
 Here is my first applet:<P>
 <APPLET code=”HelloApplet.class” width=200 height=100>

 </B
</HTML>

 </APPLET>
ODY>

 Java Programming for Kids, Parents and Grandparents 99

Do you think that after this simple example we are ready for
writing a game program? You bet! Just fasten your seat belts…

Writing a Tic-Tac-Toe Game

The Strategy

Every game uses some algorithm – a set of rules or a strategy that
have to be applied depending on the player’s actions. The
algorithms for the same game can be simple or very complicated.
When you hear that the world chess champion Gary Kasparov
plays against a computer, he actually plays against a program.
Teams of experts are trying to invent sophisticated algorithms to
beat him. The tic-tac-toe game can also be programmed using
different strategies, and we’ll be using the simple one:

1. We are going to use a 3x3 board.
2. The user will play with the symbol X, and the

computer will use O.
3. The winner must have a full row, column, or a

diagonal with the same symbols.
4. After each move, the program has to check if there is a

winner.
5. If there is a winner, the winning combination has to be

highlighted and the game has to end.
6. The game should also end if there is no more empty

squares left.
7. The player has to press the button New Game to play

again.
8. When computer makes a decision where to put the

next O, it has to try to find a row, a column or a

diagonal that has already two O’s, and put the third
row accordingly.

9. If there is no two O’s, the computer has to try to find
the two X’s and place an O to block the person’s
winning move.

10. If no winning or blocking move was found, the
computer has to try to occupy the central square, or
pick the next empty square randomly.

The Code

I’ll give you just a short description of the program here because
there is lot of comments in the applet’s code that will help you to
understand how it works.

The applet will use a BorderLayout manager, and the North
portion of the window will have the button New Game.

The center part will show nine buttons representing squares, and
the South part will display messages:

All window components will be created in the applet’s method
init(). All events will be processed by the ActionListener in the
method actionPerformed(). The method lookForWinner() is
called after every move to check if the game is over.

Rules 8, 9, and 10 from our strategy are coded in the method
computerMove()that might need to generate a random number.
This is done using the Java class Math and its method random().

You’ll also find somewhat unusual syntax when several method
calls are perform in one expression, for example:

 Java Programming for Kids, Parents and Grandparents 101

if(squares[0].getLabel().equals(squares[1].getLabel())){…}

This line makes the code shorter because it actually performs
that same actions that could have been done in the following lines:

String label0 = squares[0].getLabel();
String label1 = squares[1].getLabel();
if(label0.equals(label1)){…}

In complex expressions Java evaluates the code in parentheses
before doing any other calculations. The short version of this code
gets the result of the expression in parentheses first, and
immediately uses it as an argument for the method equals(),
which is applied to the result of the first call to getLabel().

Even though the game code occupies several pages, it should not
be to difficult to understand. Just read all program comments.

/**
 * A tic-tac-toe game on a 3x3 board
 */
import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;

public class TicTacToe extends Applet implements
 ActionListener{
Button squares[];
Button newGameButton;
Label score;
int emptySquaresLeft=9;
/**
 * init method is the applet's constructor
 */
 public void init(){
 //Set the applet's layout manager, font and color
 this.setLayout(new BorderLayout());
 this.setBackground(Color.CYAN);

 // Change the applet's font to be bold
 // of size 20 points
 Font appletFont=new Font("Monospased",Font.BOLD, 20);
 this.setFont(appletFont);
 // Create the button New Game and register it
 // with the action listener
 newGameButton=new Button("New Game");
 newGameButton.addActionListener(this);

 Panel topPanel=new Panel();
 topPanel.add(newGameButton);

Class TicTacToe (part 1 of 7)

 this.add(topPanel,"North");

 Panel centerPanel=new Panel();
 centerPanel.setLayout(new GridLayout(3,3));
 this.add(centerPanel,"Center");

 score=new Label("Your turn!");
 this.add(score,"South");

 // create an array to hold references to 9 buttons
 squares=new Button[9];

 // Instantiate the buttons, store the references
 // to them in the array, register them with the
 // listeners, paint them in orange and add to panel
 for(int i=0;i<9;i++){
 squares[i]=new Button();
 squares[i].addActionListener(this);

 squares[i].setBackground(Color.ORANGE);
 centerPanel.add(squares[i]);
 }
 }
 /**
 * This method will process all action events
 * @param ActionEvent object
 */
 public void actionPerformed(ActionEvent e) {

 Button theButton = (Button) e.getSource();
 // Is this a New Game button?
 if (theButton ==newGameButton){
 for(int i=0;i<9;i++){
 squares[i].setEnabled(true);
 squares[i].setLabel("");

 squares[i].setBackground(Color.ORANGE);
 }

 emptySquaresLeft=9;
 score.setText("Your turn!");
 newGameButton.setEnabled(false);

 return; // exit the method here
 }

 String winner = "";

 Java Programming for Kids, Parents and Grandparents 103

 // Is this one of the squares?
for (int i=0; i<9; i++) {
 if (theButton == squares[i]) {
 squares[i].setLabel("X");
 winner = lookForWinner();

 if(!"".equals(winner)){
 endTheGame();
 } else {
 computerMove();
 winner = lookForWinner();
 if (!"".equals(winner)){
 endTheGame();
 }
 }
 break;
 }
 } // end for

 if (winner.equals("X")) {
 score.setText("You won!");
 } else if (winner.equals("O")){
 score.setText("You lost!");
 } else if (winner.equals("T")){
 score.setText("It's a tie!");
 }
} // end actionPerformed

/**
 * This method is called after every move to see
 * if we have a winner. It checks every row, column
 * and diagonal to find out three squares with the
 * same label (other than blank)
 * @return "X", "O", "T" for tie or "" for no winner
 */
 String lookForWinner() {

 String theWinner = "";
 emptySquaresLeft--;

 if (emptySquaresLeft==0){
 return "T"; // it's a tie
 }

// Check the row 1 - array elements 0,1,2
if (!squares[0].getLabel().equals("") &&
 squares[0].getLabel().equals(squares[1].getLabel()) &&
 squares[0].getLabel().equals(squares[2].getLabel())) {

 theWinner = squares[0].getLabel();
 highlightWinner(0,1,2);
// Check the row 2 - array elements 3,4,5
} else if (!squares[3].getLabel().equals("") &&
 squares[3].getLabel().equals(squares[4].getLabel()) &&
 squares[3].getLabel().equals(squares[5].getLabel())) {

 theWinner = squares[3].getLabel();
 highlightWinner(3,4,5);
// Check the row 3 - - array elements 6,7,8
} else if (! squares[6].getLabel().equals("") &&
 squares[6].getLabel().equals(squares[7].getLabel()) &&
 squares[6].getLabel().equals(squares[8].getLabel())) {

 theWinner = squares[6].getLabel();
 highlightWinner(6,7,8);
// Check the column 1 - array elements 0,3,6
} else if (! squares[0].getLabel().equals("") &&
 squares[0].getLabel().equals(squares[3].getLabel()) &&
 squares[0].getLabel().equals(squares[6].getLabel())) {

 theWinner = squares[0].getLabel();
 highlightWinner(0,3,6);
// Check the column 2 - array elements 1,4,7
} else if (! squares[1].getLabel().equals("") &&
 squares[1].getLabel().equals(squares[4].getLabel()) &&
 squares[1].getLabel().equals(squares[7].getLabel())) {

 theWinner = squares[1].getLabel();
 highlightWinner(1,4,7);
// Check the column 3 - array elements 2,5,8
} else if (! squares[2].getLabel().equals("") &&
 squares[2].getLabel().equals(squares[5].getLabel()) &&
 squares[2].getLabel().equals(squares[8].getLabel())) {
 theWinner = squares[2].getLabel();
 highlightWinner(2,5,8);

 Java Programming for Kids, Parents and Grandparents 105

// Check the first diagonal - array elements 0,4,8
} else if (! squares[0].getLabel().equals("") &&
 squares[0].getLabel().equals(squares[4].getLabel()) &&
 squares[0].getLabel().equals(squares[8].getLabel())) {

 theWinner = squares[0].getLabel();
 highlightWinner(0,4,8);
// Check the second diagonal - array elements 2,4,6
} else if (! squares[2].getLabel().equals("") &&
 squares[2].getLabel().equals(squares[4].getLabel()) &&
 squares[2].getLabel().equals(squares[6].getLabel())) {

 theWinner = squares[2].getLabel();
 highlightWinner(2,4,6);
 }
 return theWinner;
}
/**
 * This method applies a set of rules to find
 * the best computer's move. If a good move
 * can't be found, it picks a random square.
 */
 void computerMove() {
 int selectedSquare;
 // Computer first tries to find an empty
 // square next the two squares with "O" to win
 selectedSquare = findEmptySquare("O");
 // if can't find two "O", at least try to stop the
 // opponent from making 3 in a row by placing
 // "O" next to 2 "X".
 if (selectedSquare == -1)
 selectedSquare = findEmptySquare("X");
 }
 // if the selectedSquare is still -1, at least
 // try to occupy the central square
 if ((selectedSquare == -1)
 &&(squares[4].getLabel().equals(""))){
 selectedSquare=4;
 }
 // no luck with the central either...
 // just get a random square
 if (selectedSquare == -1){
 selectedSquare = getRandomSquare();
 }
 squares[selectedSquare].setLabel("O");
 }

/**
 * This method checks every row, column and diagonal
 * to see if there are two squares with the same label

 int weight[] = new int[9];

 weight[i] = 0;
 }

 * and an empty square.
 * @param give X - for user, and O for computer
 * @return the number of the empty square to use,
 * or the negative 1 could not find 2 square
 * with the same label
 */
 int findEmptySquare(String player) {

 for (int i = 0; i < 9; i++) {
 if (squares[i].getLabel().equals("O"))
 weight[i] = -1;
 else if (squares[i].getLabel().equals("X"))
 weight[i] = 1;

else

 int twoWeights = player.equals("O") ? -2 : 2;

 // See if row 1 has the same 2 squares and a blank
 if (weight[0] + weight[1] + weight[2] == twoWeights
) {
 if (weight[0] == 0)
 return 0;
 else if (weight[1] == 0)
 return 1;
 else
 return 2;
 }
 // See if row 2 has the same 2 squares and a blank
 if (weight[3] +weight[4] + weight[5] == twoWeights) {
 if (weight[3] == 0)
 return 3;
 else if (weight[4] == 0)
 return 4;
 else
 return 5;
 }

 Java Programming for Kids, Parents and Grandparents 107

// See if row 3 has the same 2 squares and a blank
if (weight[6] + weight[7] +weight[8] == twoWeights) {
 if (weight[6] == 0)

== 0)
 return 7;
 else
 return
}
 // See if column 1 has the same 2 squares and a blank
if (weight[0] + weight[3] + weight[6] == twoWeights) {
 if (weigh
 return
 else if (weight[3] == 0)
 retur
 else
 return 6;
}

lumn 2 has the same 2 squares and a blank
] +weight[4] + weight[7] == twoWeights) {

 if (weight[1] == 0)
 return
 else if (
 return
 else
 return
}
 // See if colum
if (weight[2] +
 if (weig
 return
 else if (weight[5] == 0)
 return ;
 else
 return
}
//See if diagona
if (weight[0] +
 if (weigh
 return ;
 else if (
 return
 else
 return
}

 return 6;
 else if (weight[7]

 8;

t[0] == 0)
 0;

n 3;

// See if co
if (weight[1

 1;
weight[4] == 0)
 4;

 7;

n 3 has the same 2 squares and a blank
weight[5] + weight[8] == twoWeights){
t[2] == 0)
 2;

h

 5

 8;

l 1 has the same 2 squares and a blank
weight[4] + weight[8] == twoWeights){
t[0] == 0)
 0
weight[4] == 0)
 4;

 8;

Class TicTacToe (part 7 of 7)

 // See if diagonal has the same 2 s
 if

quares and a blank
 (weight[2] + weight[4] + weight[6] == twoWeights){

 if (weigh
 return
 else if (
 return
 else
 return
 }
 // There are no two neighbors that are the same
 return -1;
} // end of findEmptySquare()
/**
 * This method selects
 * @return a ran
 */
 int getRandomSq
 boolean gotEmptySquare = false;
 int selectedSquare = -1;

 do {
 selectedSquare = (int) (Math.random() * 9);
 if (squares[selectedSquare].getLabel().equals("")){
 gotEmptySquare = true; // to end the loop
 }
 } while (!gotEmptySquare);

 return selectedSquare;
 } // end getRandomSquare()
/**
 * This method highlights the winning line.
 * @param first,second and third squares to highlight
 */
 void highlightWinner(int win1, int win2, int win3) {
 squares[win1].setBackground(Color.CYAN);
 squares[win2].setBackground(Color.CYAN);
 squares[win3].setBackground(Color.CYAN);
 }
// Disables squares and enable New Game button
void endTheGame(){
 newGameButton.setEnabled(true);
 for(int i=0;i<9;i++){
 squares[i].setEnabled(false);
 }
 }
} // end of class

t[2] == 0)
 2;
weight[4] == 0)
 4;

 6;

 any empty square
domly selected square number

uare() {

 Java Programming for Kids, Parents and Grandparents 109

Cong

ou can run this applet either directly from Eclipse, or by opening
e file TicTacToe.html that we created in the beginning of this

hapter, just copy HTML file and the TicTacToe.class in the
er. Our class TicTacToe has a small bug – you might not

ice it, but I’m sure it’ll be gone after you complete the
ssignment below.

n how to program, but if you’d like to improve this game,

ratulations! You’ve completed your first game in Java.

Y
th
c
same fold
even not
second a

Our TicTacToe class uses a simple strategy because our goal is
just lear
learn so-called minimax strategy that allows to select the best
move for the computer. Description of the minimax strategy does
not belong to this book, but is available online.

Additional Reading

ooks/tutorial/applet/

Java Applets:
http://java.sun.com/docs/b

Java Class Math
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

Practice

 1. Add to the top panel of the class

e two class variables for this
ent the corresponding variable

e you have a winner or a loser.
The score has to be refreshed right after

am prints a message You won or

2. Our program allows click on the
as an X or O. This is
ontinues as if you’ve

ove. Modify the code to
ignore clicks on such squares

TicTacToe two labels to count wins and
arloses. Decl

and increm
each tim

the progr
You lost.

square that already h
a bug! The program c
made a valid m

3. Add the method main() to the class
TicTacToe to allow starting the game
not as an applet, but as a Java
application.

 Java Programming for Kids, Parents and Grandparents 111

ractice for Smarty Pants P

replace one-
dimensional array that stores nine

JButton squares[]

with two dimensional 3x3 array:

JButton squares[][]

Read about multi-dimentional arrays on
the Web.

1. Rewrite the TicTacToe to

buttons

Chapter 8. Program Errors - Exceptions

get a closing curly brace in your Java code. This

tion error that can be fixed easily. But there
 errors, when all of a sudden your program

g error message, or

 errors in so-called try/catch block. It’s as if you’re
aying to JVM the following: Try to read the file with scores, but if
o e error and execute the code that will
e

Say you for

will result in compila
are so called run-time
stops working properly. For example, a Java class reads a file with
the game scores. What’s going to happen if someone will delete this
ile? Will the program crash with that scary lonf
will it stay alive displaying a user friendly message like this one:
Dear friend, for some reason I could not read the file scores.txt.
Please make sure that the file exists? You should make your
programs ready for unusual situation. In many programming
languages error processing depends on the good will of a
programmer. But Java forces you to include error processing code,
otherwise the programs will not even compile.

Run-time errors in Java are called exceptions, and error processing
is called exception handling. You have to place code that may
produce
s
s mething happens, catch th
d al with it:

W
fa
o
h
a

A
e
b
w

try{
 fileScores.read();
}
catch (IOException e){
 System.out.println(
 "Dear friend,I could not read the file cores.txt");
}

learn how to work with files in Chapter 9, but at this point get
liar with a new term I/O or input/output. Read and write

perations (to disk or other device) are called input/output and

tch
lock ex ogram for this particular type of an error, it

e’l
mi

l

ence the IOException is a class that contains information
bout input/output errors.

 method throws an exception in case of an error. Different
xceptions will be thrown for different type of errors. If the ca

ists in the pr
ill be caught and the program will jump into the catch block to

 Java Programming for Kids, Parents and Grandparents 113

eading the Stack Trace
 occurs that is not handled by the
r lti-line error message on the screen. Such

race. If your program has called several

e error.

e write a program TestStackTrace that divides by zero on
urpose (line numbers are not the part of the code).

init()

hich
at, an
ried to

execute the code located there. The program will stay alive, and
this exception is considered to be taken care of.

The print statement from the code above will be executed only in
case of the file read error.

R

If an unexpected exception
p ogram, it prints a mu
message is called stack t
methods before it ran into a problem, the stack trace can help you

 the program, and find the line that have caused thto trace

L t’s
p

The output of this program shows the sequence of method calls
that were made up to the moment when the run-time error had
happened. Start reading this output from the last line going up.

Exception in thread "main"
java.lang.ArithmeticException: / by zero
 at TestStackTrace.divideByZero(TestStackTrace.java:9)
 at TestStackTrace.<init>(TestStackTrace.java:4)
 at TestStackTrace.main(TestStackTrace.java:14)

This means that the program started in the method main(), then
went to which is a constructor, and then called the
method eByZero(). The numbers 14, 4 and 9 show in wdivid
lines of the program these methods were called. After th

ception was thrown –the line number nine tArithmeticEx
divide by zero.

1 class TestStackTrace{
2 TestStackTrace()
3 {
4 divideByZero();
5 }
6
7 int divideByZero()
8 {
9 25/0;
10 }

return

11
12 static void main(String[]args)
13 {
14 new TestStackTrace();
15 }
16 }

 also classes, and some of them are shown

Genealogical Tree of Exceptions

xceptions in Java areE
in the following inheritance tree:

Subclasses of the class Exception are called checked exceptions
and you must process them in your code.

ubclasses of the class Error are fatal JVM errors and the

 is an example of exception that can

 block
should be used? Not to worry, if you call a method that may

S
running program can’t handle them.

The TooManyBikesException
be created by a programmer.

How a programmer is supposed to know in advance if some Java
method may throw an exception and that a try/catch

 Java Programming for Kids, Parents and Grandparents 115

tions that may be thrown by any particular
ethod. The rest of this chapter will explain how to deal with
ese exceptions.

h for error handling:
r lly, throw, throws

catch blocks, if you
e For example, when a
r e there, and you’ll get

tFoundException, or the file is there, but the code
e enerates
O sages in
l n’t find a file with game scores or
e r any other read errors it’ll print the

 and a technical description of the
r

e

If

throw an exception, Java compiler will print an error message
similar to this one:

"ScoreReader.java": unreported exception: java.io.IOException;
must be caught or declared to be thrown at line 57

Of course you are welcome to read Java documentation that
describes excep
m
th

Try/Catch Block

T ere are five Java keywords that can be used

and . t y, catch, fina

fter one try block you may put several A
b lieve that more than one error may happen.
p ogram tries to read a file, the file may not b
the FileNo
k eps reading the file after reaching the end of file – this g

agment will print mesE FException. The next code fr
p ain English if the program ca
r ached the end of the file. Fo
message Problem reading file
e ror.

If
p
e

m

p
F

public void getScores(){
 try{
 fileScores.read();
 System.out.println(“Scores loaded successfully”);
 }catch(FileNotFoundException e){
 System.out.println(“Can not find file Scores”);
 }catch(EOFException e1){
 System.out.println(“Reached end of file”);
 }catch(IOExce n e2){
 System.out.println(“Problem reading file “ +

ptio

 e2.getMessage());
 }
}
n() and tries to land in the catch block that matches the
rr
xecuted, but if the matching catch
e getScores()

 y
ar

EOFException is a subclass of the

 the method read() fails, the program jumps over the line
rintl

or. If it finds such block, the appropriate println() will be
 block is not found, the

thod will re-throw this exception to its caller.

ou write several catch blocks, you may need to place them in a
ticular order if these exceptions are inherited from each other.

or example, since the

firs
pro
bec em.

IOException, you have to put the catch block for the subclass
t. If you would put the catch for IOException first, the
gram would never reach the FileNotFound or EOFException,
ause the first catch would intercept th

Lazybones would program the method getScores() just like this:

T
p
d

C
c
g
o

c

}

If
m
c
s

L
c
P
s

j

j
i

j
v

C

j
a

public void getScores(){

eading file ”+
ssage());

 try{
 fileScores.read();
 }catch(Exception e){

ut.println(“Problem r System.o
 e.getMe
 }
}

his is an example of a bad style of Java coding. When you write a

em, and its method

System.out.println(“Problem reading file ”+ e.toString());

 out the exception, use the
quence of method

a d to this exception similar to an example from the
e

e try to “kill” the calculator program from Chapter 6. Run the
lass Calculator and enter from the keyboard the charactes abc.

ns, and you’ll see on the console

gDecimal.readJavaFormatString(FloatingDecimal.ja
a:1213)

.jav

rogram, always remember that someone else may read it, and you
on’t want to be ashamed of your code.

atch blocks receive an instance of the object Exception that
ontains a short explanation of a probl
etMessage() will return this info. Sometimes, if the description
f an error is not clear, try the method toString() instead:

atch(Exception e){

you need more detailed information ab
ethod printStackTrace(). It will print the se
lls that lea
ction Reading Stack Trace.

t's

ress any of the action butto
creen something like this:

ava.lang.NumberFormatException: For input string: "abc"
at

ava.lang.NumberFormatException.forInputString(NumberFormatExcept
on.java:48)

at
ava.lang.Floatin

at java.lang.Double.parseDouble(Double.java:202)
at

alculatorEngine.actionPerformed(CalculatorEngine.java:27)
at

avax.swing.AbstractButton.fireActionPerformed(AbstractButton
:1764)

 Java Programming for Kids, Parents and Grandparents 117

This was an example of a non-handled exception. The class
CalculatorEngine has the following line in its method
actionPerformed():

displayValue= Double.parseDouble(dispFieldText);

If the variable dispFieldTest has not a numeric value, the
method parseDouble() will not be anle to convert it to the double
data type and will throw a NumberFormatException.

Let's handle this exception and display an error message that will
explain the problem to the user. The line with parseDouble() has

 be placed in a try/catch block, and Eclipse will help you with
is. Highlight this line and right-click on it with the mouse. In the

opup menu select the items Source and Surround with try/catch

to
th
p
block. Voila! The code is changed:

R

j

r

W
d

N

T
In
th
In
m

try {
 displayValue= Double.parseDouble(dispFieldText);
} catch (NumberFormatException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
}
eplace the printStackTrace() line with the following:

e

ages, and
i essage Please enter a Number:

vax.swing.JOptionPa

ane.showConfirmDialog(null,
 "Please enter a Number", "Wrong input",
 javax.swing.JOptionPane.PLAIN_MESSAGE);
turn;

e’ve got rid of the scary st
playe

ack trace error mess
s d a simple to understand m

ow the NumberFormatException is handled.

he keyword throws
 some cases, it makes more sense to handle the exception not in
e method where it happened, but in the method’s caller.
 such cases the method signature has to declare (warn) that it
ay throw a particular exception. This is done using a special

keyword throws. Let’s use the same example that reads a file.
Since the method read() may throw an IOException, you should
either handle or declare it. In the next example we are going to
declare that the method getAllScores() may throw an
IOE

ince we are not even trying to catch exceptions here, the
 will be propagat to its

d has to handle

 within a try/catch block can end in one of the following
a :

and the method is exited.

xception:

class MySuperGame{

 void getAllScores() throws IOException{
 // …
 // Do not use try/catch if you are
 // not handling exceptions in this method
 file.read();
 }

 public static void main(String[] args){
 MySuperGame msg = new MySuperGame();
 System.out.println(“List of Scores”);

S
IOException ed from the getAllScores()

er - the method main(). Now the main methocall
this exception.

The Ke finallyyword

Any

ys
code

w

• The code inside the try block successfully ended and the

program continues.

• The code inside the try block runs into a return statement

• The code in the try block throws an exception and control goes

to the matching catch block, which either handles the error

 try{
 // Since the getAllScores()declares exception,
 // we handle it over here
 msg.getAllScores();

 }catch(IOException e){
 System.out.println(
 "Sorry, the list of scores is not available");
 }
 }

 Java Programming for Kids, Parents and Grandparents 119

keyword finally:

a
s

T
a
o
c

and the method execution continues, or it re-throws the
exception to the caller of this method.

If there is a piece of code that must be executed no matter what,
put it under the

T
o
s
d

If
m
u

T

If
c
S

try{
 file.read();
}catch(Exception e){

printStackTrace();
}finally{
 // the code that must always be executed

e.close(); // goes here, for example fil
}
h less of success or failure
f releases
o example,
i

 current
 the caller. In this case, you can

e finally even without a catch block:

e code above has to close the file regard
 the read operation. Usually, you can find the code that
me computer resources in the block lly, for fina
sconnection from a network or file closing.

you are not planning to handle exceptions in the
ethod, they will be propagated to
se th

void myMethod () throws IOException{
 try{
 // your code that reads a file goes here
}
 finally{
 // your code that closes the file goes here
 }
}
he Keyword throw

ight want to catch one exception but re-throw
nother one with a different description of the error like in the code
nippet below.

he statement throw is used to throw Java objects. The object that
 program throws must be throwable. This means that you can
nly throw objects that are direct or indirect subclasses of the
lass Throwable, and all Java exceptions are its subclasses.

 an exception has happened in a method, but you believe that the
aller should handle it, just re-throw it to the method’s caller.
ometimes, you m

The next code fra s()
catches an IOExce with
a more friendly description of the error, and re-throws it to the
method main(). ss
you put the line AllScores() in the try/catch
block, because this method may throw an and it
should be either h ()
should not throw any exceptions, that’s why it should handle it.

gment shows how the method getAllScore
ption and creates a new Exception object

Now the method main() won’t compile unle
that calls get

Exception
andled or re-thrown again. The method main

class ScoreList{
 // Additional code is needed to compile this class

 Exception{

 } catch (IOException e) {

 static void getAllScores() throws
 try{
 file.read();//this line may throw an exception

 throw n
 "Dear F
 }
 }

 public static
 System.out.println("Scores");

 try{
 get
 }
 catch(Exce
 System.out.println(e1.getMessage());
 }
 }
}

ew Exception (
riend, the file Scores has problems");

void main(String[] args){

AllScores();

ption e1){

 Java Programming for Kids, Parents and Grandparents 121

In case of a file error,
the main method will
handle it, and the

tMessage() will
 the Dear
… message.

e1.ge
return
Friend

Creating New Exceptions

Programmers could also create new exception classes that did
not exist in Java before. Such classes have to derive from one of

e Java exception classes. Let’s say you are in business of selling

s to order more than
ree of these bikes, throw the this exception:

T

th
bikes and need to validate customer orders. Different number of
bikes can fit in your small truck depending on the model. For
example, you can fit no more than three FireBird bikes in your
truck. Create a new subclass of Exception called
TooManyBikesException, and if someone trie
th

d
W
w

Im
s
C
th
class TooManyBikesException extends Exception{

 // Just call the constructor of the superclass
 // and pass to it the error message to display
 super);

}

 // Constructor
 TooManyBikesException (){

("Can't ship this many bikes in one shipment."
 }

h nly a constructor that takes the message
escribing this error and gives it to its superclass for storage.
hen some block receives this exception it can find out

pened by calling the method getMessage().

agine that a user selects on the OrderWindow several bicycles of

is class has o

catch
hat exactly has hap

ome model and hits the button Place Order. As you know from
hapter 6, this action will result in call to actionPerformed()
at will check if the order can be delivered. The next code

example shows how the method checkOrder() of this window
declares that it can throw TooManyBikesException. If the order
won’t fit in the truck, this method throws the exception, the catch
block intercepts it and displays an error message in the text field
on the window.

 a perfect world, every program would work properly, but
ealistically we have to be ready for the unexpected situations. It
eally helps that Java forces you to write code that is prepared for
ese situations.

In
r
r
th

class OrderWindow implements ActionListener{
// The code to create window components is needed here.

// The user clicked on the button Place Order
 String selectedModel = txtFieldModel.getText();
 String selectedQuantity =
 txtFieldQuantity.getText();
 int quantity = Integer.parseInt(selectedQuantity);

 void actionPerformed(ActionEvent e){
 try{
 bikeOrder.checkOrder("FireBird", quantity);
 //the next line will be skipped in case of exception
 txtFieldOrderConfirmation.setText(
 "Your order is complete");
 } catch(TooManyBikesException e){
 txtFieldOrderConfirmation.setText(e.getMessage());
 }
 }

 void checkOrder(String bikeModel, int quantity)
 throws T

ooManyBikesException{

//Write the code that checks if the requested
//quantity of bikes of selected model will fit in the
//truck. If they won't fit, do the following:

 throw new TooManyBikesException("Can not ship" +
 quantity + " bikes of the model " + bikeModel +
 " in one shipment");
 }
}

 Java Programming for Kids, Parents and Grandparents 123

Additional Reading

Handling Errors With Exceptions:
l/essential/exceptions/http://java.sun.com/docs/books/tutoria

Practice

 Use the

Create a Swing application for placing
two text fields

, a button Place
er, and the label for order

code in the examples
d
p

several combinations of bike models and
l throw an exception.

ants

bike orders. It has to have
Bike Model and Quantity
Ord
confirmation.

OrderWindow a
TooManyBikesException. Make u

n

quantities that wil

Practice for Smarty P

select from the list rather then type them.

You line abou
com

Modify the application from the previous
assignment to replace the text field Bike
Model with a dropdown list box that will
contain several models, so the user can

’ll have to read on t the Swing
ponent JComboBox and the

ItemListener to process events when the
user picks the bike model.

ame Score

 it gets erased from memory. This

 exist
is program again. If you’d like to save some results

they must be saved in files on a disk,
vice that can store the data for a

 to save data on disks
ms. Basically, you open a stream between your

r m and a file on disk. If you need to read data from disk, it
as to be an input stream, and if you write data on the disk, open

mple, if a player wins a game and you
ou can save it in a file called scores.txt

• Open a stream that points at some file.

• Read or write some data from/to this stream.

• Close the stream.

Byte Streams

stored in this file. On the other hand, a program that just copies

Chapter 9. Saving the G

After a program ends

means that all
th
 the classes, methods and variables do not

u
of

ntil you run
he p t rogram execution,

tape, a memory stick, or other de
long time. In th

Java strea
is chapter you’ll learn how

u
p

sing
grao

h
an output stream. For exa

ant to save the score, yw
using an output stream.

A program reads or writes data from/to a stream serially – byte
after byte, character after character, etc. Since your program may
use different data types like String, int, double, and so on, you
should use an appropriate Java stream, for example a byte
tream, a character stream, or a data stream. s

Classes that work with file streams are located in packages
java.io. and java.nio.

No matter what type of a file stream you are going to use, the
following three steps should be done in your program:

If you create a program that reads a file, and then displays its
content on the screen, you need to know what type of data is

 Java Programming for Kids, Parents and Grandparents 125

ads the
as a set of bytes, and then em into a

e byte using Java classes
ream.

h xample ows how to use the class to
e ated in the folder
: rosoft Windos, to
v
a separate folders
n not display the

ers , which is how this image
te has a positive integer value from 0 to

5
p

l lass ByteRader closes the stream in the
l call the method close() inside of the
r hing reading the file, do it in the
i ption during the file read, the
r would jump over the crossed-out close() statement and
e stream would not be closed! The reading ends when the
ethod FileInputStream.read() returns the value of a negative

files from one place to another, does not even need to know if it’s
an image, text or a file with music. Such program re
riginal file in memory write tho

d stination folder byte after
FileInputStream or FileOutputSt

T e next e sh FileInputStream

d a bc.gif that is locr a graphic file named a
c \practice. If you use a computer with Mic

id a special Java characters that start with a a o confusion with
b ckslash, use double slashes in your code to

rogram doesa d files: c:\\practice. This little p
e numbimage, but rather prints som

 a disk. Each byis stored on
5, and the class ByteReader2 prints these values separated by a

 s ace character.

P ease note that the c
b ock finally. Never
t y/catch block right after finis

block. In case of excef nally
m p ogra

th
m
one.

i
i
mp
mp

ub s ByteReader {

p

ing at the file

ort java.io.FileInputStream;
ort java.io.IOException;

p lic clas

 ublic static void main(String[] args) {

ileIn nullF putStream myFile = ;

 try {
 // Open a byte stream point
 myFile = new

 emp\\abc.gif");

e.read();
alueOfByte);

xit out of the loop

 break;

 } // end of while loop
myFile.close();

 FileInputStream("c:\\t

 while (true) {
int intValueOfByte = myFil

 System.out.print(" " + int V

if (intValueOfByte == -1){

 // we've reached the end of file
 // let's e

 }

 // don’t do it here

catch (IOException e) {

 } catch (Exception e1){
);

 System.out.println(

 }
 System.out.println("Could not read file: "
 + e.toString());
 } finally{
 try{

 myFile.close();

 e1.printStackTrace(
 }

 " Finished reading the file");
 }
 }

 numbers into a file called xyz.dat using the class

The next code fragment writes several bytes that are represented

 integerby
FileOutputStream:

}

 Java Programming for Kids, Parents and Grandparents 127

is
th
p

T
b
r

B

S
m
ti

m
th

Y
p

int somedata[]= {56,230,123,43,11,37};

 FileOutputStream myFile = null;

save

 try {
 // Open the file xyz.dat and
 // there data from the array
 myFile = new FileOutputStream("xyz.dat");
 for (int i = 0; i <some data.length; i++){

);

 cat
 Sy le: "+

 e.toString());

 file.write(data[i]
 }

 } ch (IOException e) {
stem.out.println("Could not write to a fi

} fi nally{

 try{
 myFile.close();

catch } (Exception e1){
 e1.printStackTrace();

 }
}
ram ByteReader e to access disk 1000
mes for a file of 1000 bytes. But accessing data on disks
 much slower than data manipulation in memory. To minimize
e number of times a program tries to access the disk, Java

rovides so-called buffers which are sort of "reservoirs of data".

he class BufferedInputStream helps quickly fill the memory
uffer with data from the FileInputStream. A buffered stream
eads a big chunk of bytes from a file in one shot into a buffer in
emory, and, then the method gets the single bytes from

uffered Streams
o far we were reading and writing data one byte at a time, which
eans that the prog will hav

 reading

read()
e buffer a lot faster.

our program can connect streams like a plumber connect two
pes. Let’s modify the example that reads a file. First the data is i

ing poured from the FileInputStream to the
ufferedInputStream, and then to the method read():

H
s
to
c

B

B
m

T
u

be
B

FileInputStream myFile = null;
 BufferedInputStream buff =null;

 try {
 myFile = new FileInputStream("abc.dat");
 // connect the streams
 buff = new BufferedInputStream(myFile);
 while (true) {
 int byteValue = buff.read();
 System.out.print(byteValue + " ");
 if (byteValue ==
 break;

 -1)

 myFile.close();
 } catch(IOException e1){
 e1.printStackTrace();
 }
 }

 }
 } catch (IOException e) {
 e.printStackTrace();
 }finally{
 try{
 buff.close();

ow big is the buffer? It depends on the JVM, but you can set its
ize and see if it makes the file reading a little faster. For example,
 set the buffer size to 5000 bytes use the two-argument

onstructor:

ufferedInputStream buff =
 new BufferedInputStream(myFile, 5000);

uffered streams do not change the type of reading – they just
ake it faster.

he BufferedOutputStream works in the same fashion, but it
ses the class FileOutputStream.

 Java Programming for Kids, Parents and Grandparents 129

re that all bytes from the butter are pushed out to the
 call the method flush() when the writing into a

Our ByteReader program stores the name of the file abc.gif right
in its code, or as programmers say, the file name is hard-coded in
the program. This means that to create a similar program that
reads the file xyz.gif, you’ll have to modify the code and recompile
the program, which is not nice. It would be much better to pass
the name of the file from a command line, when you run the
program.

You can run any Java program with command-line arguments, for
example:

java ByteReader xyz.gif

In this example we are passing to the method main() of
ByteReader just one argument - xyz.gif. If you remember, the
method main() has an argument :

To make su
ile stream,f
BufferedOutputStream is finished.

Command-Line Arguments

public static void main(String[] args) {

int somedata[]= {56,230,123,43,11,37};
 FileOutputStream myFile = null;

uff =null;

 try {

 BufferedOutputStream b

 myFile = new FileOutputStream("abc.dat");
 // connect the streams
 buff = new BufferedOutputStream(myFile);
 for (int i = 0; i <somedata.length; i++){
 buff.write(somedata[i]);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }finally{
 try{
 buff.flush();
 buff.close();
 myFile.close();
 } catch(IOException e1){
 e1.printStackTrace();
 }
 }

es, it’s a String array that JVM passes to the main method, and
 any command line arguments, this
r , this array will have exactly as

of command-line arguments passed

e arguments in a very
i ple c :

Y
if you start a program without
a ray remains empty. Otherwise
many elements as the number
to the program.

L t’s see how we can use these command line
s m lass that will just print them

T
p
is
g

C

S
th

i

It
c
m
a
im

pu class TestArguments { blic

 public static void main(String[] args) {

 // How many arguments we've got?
 int numberOfArgs = args.length;

 i<numbe for (int i=0; rOfArgs; i++){
 System.out.println("I've got " + args[i]);
 }
 }
 }

h u what happens if you run this
r f and 250. The value xyz.gif

], and the second one
o].

e next screenshot shows yo
ogram with tw guments – xyzo ar .gi

M in placed by JV to the element args[0
es into args[1

ommand-line arguments are always being passed to a program as

 myScore = Integer.parseInt(args[1]);

oesn’t receive expected
rguments, ould print a brief message about it and

it():

trings. It’s the responsibility of a program to convert the data to
e appropriate data type, for example:

nt

’s always a good idea to check if the command line contains
orrect number of arguments. Do this right in the beginning of the
ethod main(). If the program d

it sh
mediately stop by using a special method System.ex

 Java Programming for Kids, Parents and Grandparents 131

he e write a program to copy
l ith any files, the names of

orig o be passed to this program
s omm

o our programs in Eclipse that also has a place to
r ide ents to each of your programs. In the

)=Arguments and enter
e

public static void main(String[] args) {
 if (args.length != 2){

uments, for example:");
rguments xyz.gif 250");

In t nd of this chapter you’ll have to
fi es. To make this program working w

 tthe inal and destination files have
a c and-line arguments.

Y u can st y te
p ov command-line argum
Run window, select the tab that reads (x

iredr qu values in the box Program Arguments.

 System.out.println(
 "Please provide arg

estA System.out.println("java T

 // Exit the program
 System.exit(0);
 }
}

VM arguments box allows you to pass parameters to your JVM.
Such parameters could request more memory for your program,
fine-tune performance of the JVM, etc. The section Additional
Reading has a reference to a Web site that that describes these
parameters in details.

Reading Text Files

va uses two-byte characters to store letters, and the classes
i dy for working with text files.
h text files either one character at a time

readLine(). Classes
i their counterparts
u eredReader and BufferedWriter that will speed up the
ork with files.

se any plain text editor and create a file c:\scores.txt with the

Dav
Bria
Ann
Zachary 160

Run the program Scor f this
file. Add several more lines to the file with scores and re-run the
pro hat the

Ja
F leReader and FileWriter are han
T ese classes can read

ith the method read(), or entire lines with
also have

w
F leReader and FileWriter
B ff
w

Thr next class ScoreReader reads the file scores.txt line by line,
and the program ends when the method readLine() returns null
which means end of file.

U
following content:

id 235
n 190
a 225

eReader, and it’ll print the content o

gram to see t new lines are also printed.

 Java Programming for Kids, Parents and Grandparents 133

If
s
T
e

F
o
r

F

If
c

F

T
s

import java. io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;

public class ScoreReader {

File);

 while (true) {
 // read a line from scores.txt

 public static void main(String[] args) {
 FileReader myFile = null;
 BufferedReader buff = null;

 try {
 myFile=new FileReader("c:\\scores.txt");
 buff = new BufferedReader(my

 String line = buff.readLine();
 // check for the end of file
 if (line == null)
 break;
 System.out.println(line);
 } // end while
 }catch (IOException e){
 e.printStackTrace();
 } finally {
 try{
 buff.close();
 myFile.close();
 }catch(IOException e1){
 e1.printStackTrace();
 }
 }
 } // end main
}
 your program needs to write a text file on a disk, use one of the
everal overloaded methods write() of the class FileWriter .
hese methods will allow you to write a character, a String or an
ntire array of characters.

ileWriter has more than one overloaded constructor, and if you
pen a file for writing providing just the file name, this file will be
eplaced by the new one every time you run the program:

ileWriter fOut = new FileWriter("Scores.txt");

 you need to add data to an existing file, use the two-argument
onstructor (true means append mode):

ileWriter fOut = new FileWriter("Scores.txt", true);

he next class ScoreWriter writes three lines from the array
cores into the file c:\scores.txt.

O

W
W
W
F

import java.io.F
import java.io.B
import java.io.IOException;

public class Sco

 public sta void main(String[] args) {

 FileWriter myFile = null;
 BufferedWriter buff = null;

new String[3];

ulate array with scores
 scores[0] = "Mr. Smith 240";
 scores[1] = "Ms. Lee 300";
 scores[2]

 try {
 myFile =
 FileWriter("c:\\scores2.txt");
 buff = n

 for (in
 // wri

ileWriter;
ufferedWriter;

reWriter {

ic t

 String[] scores =

 // Pop

= "Mr. Dolittle 190";

 new

ew BufferedWriter(myFile);

 i=0; i < scores.length; i++) {
e strings array into scores2.txt
t
t

 buff.wr

 System.
 }
 System.out.println("File writing is complete");

 }catch (IO
 e.printStackTrace();
 } finally {
 try{
 buff.flush();
 buff.close();
 myFile.close();
 }catch(IOException e1){
 e1.printStackTrace();
 }
 }
 } // end of main

ite(scores[i]);

out.println("Writing " + scores[i]);

Exception e){

utput of this program will look like this:

riting Mr. Smith 240
riting Ms. Lee 300
riting Mr. Dolittle 190
ile writing is complete

}

 Java Programming for Kids, Parents and Grandparents 135

lass File
lass java.io.Fi hich

allow to rename a etc.
Say your program to
display a message ts.
To do this, you ha iving
he name of the this

method returns t uld
display a warning,

C
c
a
c

C

C le has a number of handy methods, w

 file, delete a file, check if the class exists,
 saves some data in a file, and it needs

 to the user warning if such file already exis
ve to create an instance of the object File g
file, and then call the method exists(). If
rue, the file abc.txt is found and you sho
 otherwise there is no such file:

t

S

T
c
o

File aFile = new File("abc.txt");

if (aFile.exists()){
 // Print a message or use a JOptionPane
 // to display a warning
}
onstructor of the
reates an insta
ctual file. If you really need to create a file, use the method
reateNewFile()

ome of the useful he class File are listed next.

Method name What it does

 class File does not actually create a file – it just
nce of this object in memory that points at the

instead.

 methods of t

createNewFile() Creates a new, empty file named
according to the file name used during
the File instantiation. It creates a new
file only if a file with this name does
not exist.

delete() Deletes a file or a directory
renameTo() Renames a file
length() Returns the length of the file in bytes
exists() Returns true if the file exists
list() Returns an array of strings with names

of
 files/directories located within a
particular directory

lastModified() Returns the time when the file was last
modified

mkDir() Creates a directory

he next code snippet below renames a file customers.txt to
ustomers.txt.bak. If the .bak file already exists, it will be
verridden.

File
File

 (backup.exists()){
 backup.delete();

file = new File("customers.txt");
backup = new File("customers.txt.bak");

if

}
file.renameTo(backup);

 this chapter was about working with files located on
ter’s disk, Java allows you to create streams pointing
achines on the computer network. Such computers

 Java to control Mars rovers, and I’m sure that they

Even though
your compu
to remote m
can be located pretty far apart from each other. For example,
NASA uses
just pointed their streams at Mars. ☺

 Java Programming for Kids, Parents and Grandparents 137

dditional Reading A

1.JVM command line options
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/java.html

2. How to use File Streams:
http://java.sun.com/docs/books/tutorial/essential/io/filestreams
.html

ractice

P

Write a file copy program called FileCopy
by combining the code fragments from
the section on byte streams.

Open two streams (input and output) and
call the methods read() and write() in
the same loop. Use command line
arguments to pass the names of the
original file and its new destination to the
program, for example :

java FileCopy c:\\temp\\scores.txt
 c:\\backup\\scores2.txt

Practice for Smarty Pants

window should pop up when the user
clicks one of the Browse buttons. You’ll
have to write a couple of lines of code to
display selected file name in the
appropriate text field.

Create a Swing program that will allow
elect file names to copy using the

, which creates a
d file selection window. This

users s
class JFileChooser
standar

When the u
the co

ser clicks on the button Copy,
de in the method

actionPerformed() should copy selected
file. Try to reuse the code from the
previous assignment without doing
copy/paste.

 Java Programming for Kids, Parents and Grandparents 139

a Building Blocks

rent Java

l nd even created a Tic-Tac-Toe
a important Java elements and

up on them.

 can find
u ifferent

a has
em -

a xt.SimpleDateFormat will take
a eeds.

e
n

Chapter 10. More Jav

We’ve had a chance to use quite a bit of diffe

e ements in the previous chapters, a
But I’ve skipped some of the g me.

te

chniques, and it’s time to catch

Working with Date and Time Values

Each computer has an internal clock. Any Java program
o t what’s the current date and time, and display it in d
formats, for example 06/15/2004 or June 15, 2004. Jav

 classes that deal with dates, but two of thmultiple
j va.util.Date and java.te

 most of your dat/time nc re of

It’s easy to create an object that stores the current system dat

e millisecond: a d time up to th

Date today = new Date();
S

y

h output of these lines may look similar to this one:

stem.out.println("The date is " + today);

T e

The date is Fri Feb 27 07:18:51 EST 2004

 SimpleDateFormat allows you to display date and time
in different formats. First, you have to create an instance of this
class with format that you need, and then call its method
format() passing a Date object as an argument. The next
program formats and prints the current date in several different
formats.

The class

ormat, and it will print
:

Compile and run the class MyDateF

import java.util.Date;
Format;

blic

) {

mat

02-27-04

("MM-dd-yy");
today);
-mm-yy) is "

 + formattedDate);

 // Format that prints dates like 27-02-2004
 sdf = new SimpleDateFormat("dd-MM-yyyy");

t.println(
+ formattedDate);

e like 07:18:51 AM

sdf = new SimpleDateFormat("hh:mm:ss a");
formattedDate=sdf.format(today);

 + formattedDate);

 }
}

import java.text.SimpleDate

pu class MyDateFormat {

 public static void main(String [] args

ect Date // Create an obj
 // and print it in a default for

 Date(); Date today = new
 System.out.println("The date is " + today);

 // Format that prints dates like
 SimpleDateFormat sdf=

SimpleDateFormat new
 String formattedDate=sdf.format(

println("The date(dd System.out.

something like this

The date is Fri Feb 27 07:34:41 EST 2004
The date(dd-mm-yy) is 02-27-04
The date(dd-mm-yyyy) is 27-02-2004
The date(EEE, MMM d, ''yy) is Fri, Feb 27, '04
The time(hh:mm:ss a) is 07:34:41 AM

Java documentation for the class SimpleDateFormat describes
more formats. You can also find more methods that deal with dates
in other Java class called java.util.Calendar.

Method Overloading

A class may have more than one method with the same name, but
with different argument lists. This is called method overloading.

 formattedDate=sdf.format(today);
 System.out.println("The date(dd-mm-yyyy) is "
 + formattedDate);

 // Format that prints dates like Fri, Feb 27, ‘04
 sdf = new SimpleDateFormat("EEE, MMM d, ''yy");
 formattedDate=sdf.format(today);
 System.ou
 "The date(EEE, MMM d, ''yy) is "

 // Format that prints tim

 System.out.println("The time(hh:mm:ss a) is "

 Java Programming for Kids, Parents and Grandparents 141

es of arguments: String, int, char, and
thers:

For example, a method println() of the class System can be
called with different typ
o

System.out.println("Hello");

System.out.println(250);

System.out.println('A');

ven though it looks like we’re calling the same method
rintln() three times, in fact, we are calling different ones. You
ay say why don’t create methods with different names, for

xample printString(), printInt(), printChar()?. One of the
asons is that it’s easier to remember one name of a print method
an several ones. There are other reasons as well for using
ethod overloading, but those reasons are a bit complicated to

xplain and should be discussed in more advanced books.

 you remember, our class Fish from Chapter 4, which has a
ethod dive() that expects one argument:

E
p
m
e
re
th
m
e

If
m

public int dive(int howDeep)

et’s create yet another version of this method that does not need
ny arguments. This method will force a fish to dive for five feet,
nless the current depth becomes more than 100 feet. The new
ersion of the class Fish has a new final variable

L
a
u
v
DEFAULT_DIVING that has a value five feet.

ow the class Fish has two overloaded methods dive().

N

T
d

public class Fish extends Pet {
 int currentDepth=0;
 final int DEFAULT_DIVING = 5;

 public int dive(){
 currentDepth=currentDepth + DEFAULT_DIVING;
 if (currentDepth > 100){
 System.out.println("I am a little fish and " +
 " can't dive below 100 feet");
 currentDepth=currentDepth - DEFAULT_DIVING;
 } {
 System.out.println("Diving for " +
 DEFAULT_DIVING + " feet");
 System.out.println("I'm at " + currentDepth +
 " feet below the sea level");
 }

else

 return currentDepth;
 }
 public int dive(int howDeep){

owDeep;

 System.out.println("I am a little fish and " +

rentDepth;
 }

tor
artingPosition){

 currentDepth=startingPosition;
 }
}

 currentDepth=currentDepth + h
 if (currentDepth > 100){

 " can't dive below 100 feet");
 currentDepth=currentDepth - howDeep;
 }else{
 System.out.println("Diving for " + howDeep +
 " feet");
 System.out.println("I'm at " + currentDepth +
 " feet below the sea level");
 }
 return cur

 public String say(String something){
 return "Don't you know that fishes do not talk?";
 }
 // construc
 Fish(int st

he FishMaster can now call any of the overloaded methods
ive():

 Java Programming for Kids, Parents and Grandparents 143

C
u
c
a
F
w

F

o

F

R

In
th
e
F
N
w

Y
o
d
w
o

T
s
ty
public class FishMaster {

 public static void main(String[] args) {

 Fish myFish = new Fish(20);

 myFish.dive(2);

 myFish.dive(); // a new overloaded method

 myFish.dive(97);
 myFish.dive(3);

 myFish.sleep();
 }
}
onstructors can also be overloaded, but only one of them will be
sed when an object is being created. JVM will call the
onstructor that has a matching argument list. For example, if you
dd a no-arguments constructor to the class Fish, the
ishMaster can create its instance using one of the following
ays:

ish myFish = new Fish(20);

r

ish myFish = new Fish();

 this section you’ll learn how a program can print questions in
e command window and understand the responses that a user

nters from the keyboard. This time we’ll remove from the class
ishMaster all hard-coded values that it passes to the class Fish.
ow the program will ask the question How Deep?, and the fish
ill dive according to the user’s responses.

ou should be pretty comfortable by now with using standard

 is java.io.InputStream.

eading Keyboard Input

utput System.out. By the way, the variable out is of a
ata type java.io.OutputStream. Now I’ll explain you how to deal
ith standard input System.in, and as you can guess, the type
f the variable in

he next version of the class FishMaster displays a prompt on the
ystem console and waits for the user’s response. After the user
pes one or more characters and presses the button Enter, JVM

places these characters into the object InputStream and pass
them to the program.

A
li

R
1
D
I
R
3
D
I
R
Q
G

import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;

public class FishMaster {

 public static void main(String[] args) {

 Fish myFish = new Fish(20);
 String feetString="";
 int feets;
 // create a input stream reader connected to
 // System.in, and pass it to the buffered reader
 BufferedReader stdin = new BufferedReader
 (new InputStreamReader(System.in));

 // Keep diving until the user presses "Q"
 while (true) {
 System.out.println("Ready to dive.How deep?");
 try {
 feetString = stdin.readLine();
 if (feetString.equals("Q")){

 {
 // Convert the feetString into an integer and
 // Dive according to the value of variable feet
 feets = Integer.parseInt(feetString);
 myFish.dive(feets);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 } // End while
 } // End main
}

 // Exit the program
 System.out.println("Good bye!");
 System.exit(0);
 }else

 dialog between the user and the program FishMaster can look
ke this:

eady to dive.How deep?
4
iving for 14 feet
'm at 34 feet below the sea level
eady to dive.How deep?
0
iving for 30 feet
'm at 64 feet below the sea level
eady to dive.How deep?

ood bye!

 Java Programming for Kids, Parents and Grandparents 145

irst, the FishMaster creates the BufferedReader stream that is
onnected to the standard input System.in. After that it displays
e message Ready to dive. How deep? and the method readLine()

auses the program until the user hits the Enter button. The
ntered value comes as a String, that’s why the FishMaster
onverts it to an integer and calls the method dive() on the class
ish. These action repeat in a loop until the user types the letter Q
 exit the program. The line feetString.equals("Q") compares
e value of the String variable feetString with the letter Q.

e were using the method readLine() to get the entire line

ore on Java Packages

et’s create a new project in Eclipse called PingPong. This project
ill have classes in two packages: screens and engine. Now
reate a new class PingPongTable and enter the word screens in
e field Package:

F
c
th
p
e
c
F
to
th

W
entered by the user at once, but there is another method
System.in.read() that allows you to process user’s input one
character at a time.

M

When programmers work on large projects that have lots of
classes, they usually organize them in different packages. For
example, one package can have all classes that display windows
(screens), while another one can contain event listeners. Java
also keeps its classes in packages, for example java.io for
classes responsible for input/output operation, or javax.swing
for Swing classes.

L
w
c
th

Press the button Finish and Eclipse will generate code that include
the line with the package name.

B
p
a

S
E
P

package screens;

public class PingPongTable {

 public static void main(String[] args) {
 }
}
y the way, if your class includes the line with the keyword
ackage, you are not allowed to write anything but comments
bove this line.

ince each package is stored in a different folder on the disk,
clipse creates the folder screens and put the file
inPongTable.java there. Check it out – there should be a folder

 Java Programming for Kids, Parents and Grandparents 147

:\eclipse\workspace\PingPong\screens on your disk with files
ingPongTable.java and PingPongTable.class.

c
P

Now create another class called PingPongEngine and enter the

ord engine as the package name. The PingPong project has two
ackages now:

w
p

Since our two classes are located in two different packages (and

lders), the class PingPongTable won’t see the class
ingPongEngine unless you add the import statement.

fo
P

J
c
“f

A

J
p
P
c
k
P
c

a
c

S
c
th
a

package screens;

import engine.PingPongEngine;

public class PingPongTable {

 public static void main(String[] args) {
 PingPongEngine gameEngine = new PingPongEngine();
 }

ava packages not only help better organize your classes, but they
an be also used to restrict access to their classes from the
oreigners” sitting in other packages.

ccess Levels

ava classes, methods and member variables could have public,
rivate, protected and package access levels. Our class
ingPongEngine has public access level. This means than any
lass can access it. Let’s make a simple experiment – remove the
eyword public from the declaration of the class
ingPongEngine. Now the class PingPongTable won’t even
ompile giving an error PingPongEngine can not be resolved or is not
 type. This means that the class PingPongTable does not see the

at these methods are not visible. You’ll see how the access levels

lass PingPongEngine anymore.

imilarly, if you forget to give a public access to methods of the
lass PingPongEngine, the PingPongTable will complain saying

re used in the next chapter while creating a ping pong game.

}

If no access level is specified, the class will have a
package access level. This means that it will be available

 same package. only for the classes located in the

 Java Programming for Kids, Parents and Grandparents 149

The private access level is used to hide class variables or

ethods from the outside world. Think of a car – most of the
eople have no clue how many parts are there under the hood, and
hat actually happens when a driver pushes the brake pedal.

ook at the next code sample - in Java, we can say that the object
ar exposes only one public method – brake(), which internally
ay call several other methods that a driver does not need to

now about. For example, if the driver pushes the brake pedal too
ard, the car’s computer may apply special anti-lock brakes. I
lready mentioned before that Java programs control such
omplicated robots as Mars rovers, let alone simple cars.

m
p
w

L
C
m
k
h
a
c

T
le
w
o
fo

public Car {

 // This private variable can be used inside
 // this class only

class

 private String brakesCondition;

 // A public method brake() calls private methods
 // to decide which brakes to use
 public void brake(int pedalPressure){
 boolean useRegularBrakes;
 useRegularBrakes=
 checkForAntiLockBrakes (pedalPressure);

 if (useRegularBrakes==true){
 useRegularBrakes();
 }else{
 useAntiLockBrakes();
 }
 }

 // This private method can be called inside
 // this class only
 private boolean checkForAntiLockBrakes(int pressure){
 if (pressure > 100){
 return true;
 }else {
 return false;
 }
 }

 // This private method can be called inside this
 // class only
 private void useRegularBrakes(){
 // code that sends a signal to regular brakes
 }

 // This private method can be called inside this
 // class only
 private void useAntiLockBrakes(){
 // code that sends a signal to anti-lock brakes
 }
}

here is one more Java keyw
vel. If you use this keyword in a method signature, this method
ill be visible inside the class, from its subclasses, and from
ther classes located in the same package. But it won’t be available
r independent classes located in other packages.

ord protected that controls access

One of the main features of object-oriented languages is
called encapsulation, which is an ability to hide and
protect elements of a class.

 Java Programming for Kids, Parents and Grandparents 151

hen you design a class, hide methods and member variables
at should not be visible from outside. If car designers would not

ide control of some of the under-the-hood operations, the driver
ould have to deal with hundreds of buttons, switches and gauges.

W
th
h
w

In the next section you can find a class Score that hides its
attributes in private variables.

Getting Back to Arrays

 as player’s first and last names, score,
the game as played.

aller class can not just set the value of the attribute
ore just like this:

In Chapter 9 the program ScoreWriter has created an array of
String objects that stored names and scores of players in a file.
It’s about time to learn how to use arrays for storing any objects.

This time we’ll create an object to represent a game score, and it
will have such attributes
and the last date when w

The class Score is next. It has getters and setters for each of its
attributes, which are declared private. Well, it might not be obvious
why the c
sc

Score.score = 250;
instead of
Score.setScore(250);

ry to think out of the box. What if later on we decide that our

 way. If the
aller class would se value directly, l changes had

r each

T
program has to play some music whenever a player reaches the
score of 500. If the class Score have a method setScore(), you
just need to modify only this method to add code that checks the
score and plays music if needed. The caller class will keep calling
the musical version of the method setScore() the same

t the the musicac
to be implemented in this caller. And what if you’d like to re-use
the class Score in two different game programs? In case of direct
attribute changes you’d have to implement these changes in two
caller classes, but if you have a setter method, the changes are
encapsulated there and will immediately start working fo
aller class. c

import java.util.Date;

public class Score {
 private String firstName;
 private String lastName;
 private int score;
 private Date playDate;

 public String getFirstName(){
 return firstName;
 }
 public void setFirstName(String firstName){
 this.firstName = firstName;
 }
 public String getLastName(){
 return lastName;
 }
 public void setLastName(String lastName){
 this.lastName = lastName;
 }
 public int getScore(){
 return score;
 }

PlayDate(){
ayDate;

etPlayDate(Date playDate){
 this.playDate=playDate;

 public void setScore(int score){
 this.score=score;
 }
 public Date get
 return pl
 }
 public void s

 }
// Concatenate all attributes into a String
// and add a new line character at the end.
// This method is handy if the caller class needs
// to print all values in one shot, for example
// System.out.println(myScore.toString());
 public String toString(){
 String scoreString = firstName + " " +
 lastName + " " + score + " " + playDate +
 System.getProperty("line.separator");
 return scoreString;
 }

}

 Java Programming for Kids, Parents and Grandparents 153

The program ScoreWriter2 will create instances of the object
Score and assign the values to their attributes.

Class ScoreWriter2 (part 1 of 2)

import java.io.FileWriter;
import java.io.BufferedWriter;
import java.io.IOException;
import java.util.Date;

public class ScoreWriter2 {

/**
 The method main performs the following actions:
 1. Create an instance of array
 2. Create Score objects and populate array with them
 3. Write the scores data into a file
*/
 public static void main(String[] args) {

 FileWriter myFile = null;
 BufferedWriter buff = null;

 Date today = new Date();
 Score scores[] = new Score[3];

 // The player #1
 scores[0]=new Score();
 scores[0].setFirstName("John");
 scores[0].setLastName("Smith");
 scores[0].setScore(250);
 scores[0].setPlayDate(today);

 // The player #2
 scores[1]=new Score();
 scores[1].setFirstName("Anna");
 scores[1].setLastName("Lee");
 scores[1].setScore(300);

 scores[2].setLastName("Dolittle");
 scores[2].setScore(190);

 scores[1].setPlayDate(today);

 // The player #3
 scores[2]=new Score();
 scores[2].setFirstName("David");

 scores[2].setPlayDate(today);

If
a
A

C

T
w
s
fr
a
j

T
n
in
b

S

 {
 myFile = new FileWriter("c:\\scores2.txt");
 buff = new BufferedWriter(myFile);

 for (int i=0; i < scores.length; i++) {
 // Convert each of the scores to a String
 // and write it into scores2.txt
 b

try

uff.write(scores[i].toString());
 System.out.println("Writing " +
 scores[i].getLastName());
 }
 System.out.println("File writing is complete");

 }catch (IOException e){
 e.printStackTrace();
 } finally {
 try{
 buff.flush();
 buff.close();
 myFile.close();
 }catch(IOException e1){
 e1.printStackTrace();
 }
 }
 }
}

Class ScoreWriter2 (part 2 of 2)

 a program tries to access an array element that is beyond the
rrays length, i.e. scores[5].getLastName(), Java throws the
rrayIndexOutOfBoundsException.

lass ArrayList
he package java.util includes classes that are quite handy
hen a program needs to store several instances (a collection) of
ome objects in memory. Some of the popular collection classes
om this package are ArrayList, Vector, HashTable, HashMap
nd List. I’ll show you how to use the class
ava.util.ArrayList.

he drawback of regular arrays is that you have to know the
umber of array elements in advance. Remember, to create an
stance of an array you have to put a number between the

rackets:

tring[] myFriends = new String[5];

 Java Programming for Kids, Parents and Grandparents 155

 have this restriction – you can create
n without knowing how many objects

ill be there – just ts as needed.

Why use arrays, let’s just always use ArrayList! Unfortunately,
nothing comes for free, and you have to pay the pri
convenience – ArrayList array,
and you could only store objects there, for example you can not
just store a bunc an ArrayList.

To create and populate an ArrayList object, you should
instantiate it first, create instances of the objects you are planning
to store there, an g its

ethod add(). T e next little program will populate an ArrayList
ith String objects and print the content of this collection.

T

Class ArrayList does not
n instance of this collectioa

w add more elemen

ce for a
 is a little slower than a regular

h of int numbers in

d add them to the ArrayList by callin
m
w

h

F
F
F
F

T
a
c
O
to
e
f

import java.util.ArrayList;

public class Arr
 public static
 // Create
 ArrayList
 friends.ad
 friends.ad
 friends.ad
 friends.a

 // How man
 int friendsCount = friends.size();

 // Print the
 for (int i=0
 System.out

ayListDemo {
void main(String[] args) {
and populate an ArrayList
friends = new ArrayList();
d("Mary");
d("Ann");
d("David");
d("Roy"); d

y friends are there?

 content of the ArrayList
; i<friendsCount; i++){
.println("Friend #" + i + " is "

 + frie
 }
 }
}

nds.get(i));
his program will print the following lines:

riend #0 is Mary
riend #1 is Ann
riend #2 is David
riend #3 is Roy

he method get()extracts from an ArrayList the element located
t a particular position. Since you can store any objects in a
ollection, the method get() returns each element as a Java
bject, and it’s a responsibility of the program to cast this object
 a proper data type. We did not have to do it in the previous

xample only because we stored String objects in the collection
riends, and Java converts an Object to a String automatically.

ist some other objects, for
, the proper code to add and

tract a particular Fish may look as in the program FishTank
at comes next. F

f the class Fish, assigns some value to color, weight and current
depth and stores t , the
program gets the objects from this collection, casts them to the
class Fish and prints their values.

H

But if you decide to store in ArrayL
xample instances of the class Fishe

ex
t
o
h irst, this program creates a couple of instances

hem in the ArrayList called fishTank. Then

G
G

N
a
w
v
p
v
a

import java.util.ArrayList;

public class FishTank {
 public static void main(String[] args) {
 ArrayList fishTank = new ArrayList();
 Fish theFish;

 Fish aFish = new Fish(20);

 aFish.color = "Red";
 aFish.weight = 2;
 fishTank.add(aFish);

 aFish = new Fish(10);
 aFish.color = "Green";
 aFish.weight = 5;
 fishTank.add(aFish);

 int fishCount = fishTank.size();

 for (int i=0;i<fishCount; i++){
 theFish = (Fish) fishTank.get(i);
 System.out.println("Got the " +
 theFish.color + " fish that weighs " +
 theFish.weight + " pounds. Depth:" +
 theFish.currentDepth);
 }
 }
}

ere’s an output of the program FishTank:

ot the Red fish that weighs 2.0 pounds. Depth:20
ot the Green fish that weighs 5.0 pounds. Depth:10

ow that you’ve read about the Java access levels, classes Pet
nd Fish can be modified a bit. Such variables as age, color,
eight and height should be declared as protected, and the
ariable currentDepth should be private. You should add new
ublic methods such as getAge() to return the value of the
ariable age, and setAge() has to set the value of this variable,
n so on.

 Java Programming for Kids, Parents and Grandparents 157

Programmers with good manners do not allow one class directly
modify properties of another one – the class should provide
methods that modify its internals. That’s why the class Score

private variables,
hich could be changed with setters and getters.

In this chapter I’ve shown you different Java elements and
chniques that seem to be unrel ed to each other. But all these
ements are often used by professional Java programmers. After
mpletion of the practical assignments for this chapter you
ould have a better understanding of how these elements work
gether.

from the previous section was designed with
w

te
el

at

co
sh
to

Additional Reading

1. Java Collections
http://java.sun.com/do

:
cs/books/tutorial/collections/intro/

2. Class Array
http://java.sun.com/j2

List:
se/1.5.0/docs/api/java/util/ArrayList.htm

l

3. Class Vector
http://java.sun.com/j2se/1

:
.5.0/docs/api/java/util/Vector.html

4. Class Calend
http://java.sun.com/j2se

ar:
/1.5.0/docs/api/java/util/Calendar.html

Practice

1.Add an overloaded no-argument
constructor to the class Fish. This
constructor should set the starting
position to 10 feet. The class FishMaster
will create an instance of the object Fish
just like this:

eWriter3 that will populate the
instances of the objects not by

Fish myFish = new Fish();

2. Add a four-argument constructor to the
class Score. Create a program
Scor

Score
using setters, but rather at the time when
the score are created, for example

Score aScore =
 new Score("John", "Smith", 250, today);

 Java Programming for Kids, Parents and Grandparents 159

Practice for Smarty Pants

Learn online how to use the class Vector and try
to create a program VectorDemo that is similar to
the program ArrayLiastDemo.

ame

ll these
ing while creating a ping pong game. This game will have two

yed at the bottom of the

ll should go beyond the racket’s vertical
line when the racket is not blocking the ball.

7. When computer bounces the ball, it can move only
horizontally to the right.

8. If the ball contacts the kid’s racket in the upper half of the
table, the ball should be moving in the up-and-left direction.
If the ball was located in the bottom part of the table, it
should move in the down-and-left direction.

Chapter 11. Back to Graphics – the Ping
Pong G

In chapters 5, 6 and 7 we’ve used some of AWT and Swing

components. Now I’ll show you how you can draw and move such
objects as ovals, rectangles and lines in a window. You’ll also learn
how to process mouse and keyboard events. To add a little fun to
these boring subjects, in this chapter we’ll be learning a
th
players and I call them the kid and computer.

The Strategy

Let’s come up with some rules of the game:

1. The game lasts until one of the players (the kid or computer)
will reach the score of 21.

2. Kid’s racket movements will be controlled by the computer
mouse.

3. Game score has to be displa
window.

4. A new game starts when a player presses the N key on the
keyboard, Q ends the game, and S serves the ball.

5. Only the kid can serve the ball.
6. To win a point the ba

 Java Programming for Kids, Parents and Grandparents 161

u must be thinking that it’s
ing to be too difficult to
ogram. The trick is to split a
mplicated task into a set of
aller and simpler tasks, and

y to solve each of them one at
time.

is trick is called analytical
inking, and it helps not only
 programming, but
erywhere in your life – do not
t frustrated if you can’t
hieve a big goal, split it in a
t of the smaller ones an reach
em one at time!

at’s why the first version of
e game will have only some of

ese rules implemented – it’ll just paint the table, move the racket
d display coordinates of the mouse pointer when you click the
ouse button.

he Code

is game will consist of the following three classes:

• Class PingPongGreenTable will take care of the visual
part. During the gam
and the ball.

• Class PingPongGameEngine will be responsible for

calculations of the ball and rackets’ coordinates, starting
and ending the game, and serving the ball. The engine
class will pass the current coordinates of components to
PingPongGreenTable, which will repaint itself
accordingly.

• Interface GameConstants will contain declarations of all

constants that the game needs, for example width and
height of the table, starting positions of the rackets and
so on.

The ping pong table will look like this:

Yo
Instead of just saying “My
computer does not work” (a
big problem), try to see what
exactly does not work (find
the smaller one).

1.Is computer plugged into
the power outlet (yes/no)?
Yes.
2. When I start the computer,
do I see the screen with all
these icons (yes/no)? Yes.
3. Can I move the mouse on
the screen (yes/no)? No.
4. Is the mouse cable plugged
in properly (yes/no)? No.

Just plug in the mouse and
computer will start working
again! A big problem came
down to fixing a loose mouse
cable.

go
pr
co
sm
tr
a

Th
th
in
ev
ge
ac
se
th

Th
th

th
an
m

T

hT

e it’ll be displaying the table, rackets

The first version of this game will do only three things:

• Display a green ping pong table.
• Display coordinates of the mouse pointer when you click

on the mouse.
• Move the kid’s racket up and down.

wo pages later you can see our PingPongGreenTable class that
JPanel. Look at the code while

eading the text below.

PingPongGreenTable class will create
PingPongGameEngine. This

he method addPaneltoFrame() creates a label that will display

 is not an applet, and that’s why instead of the method
 it uses the method paintComponent(). This method is

called either by JVM when it n to refresh the window
our program calls a metho
method repaint() internally calls paintComponent() and
provides your class with an object Graphics so you can paint on
the window. We’ll call this method every time after recalculating
coordinates of the rackets or the ball to display them in the proper
position.

To paint a racket, set the color first, and then fill a rectangle with
this paint using the method fillRect(). This method needs to
know X and Y coordinates of the top left corner of the rectangle and

T
is a subclass of the Swing’s
r

Since our game needs to know exact coordinates of the mouse
pointer, constructor of the
an instance of the event listener class
class will perform some actions when the kid clicks on the mouse
button or just moves the mouse.

T
coordinates of the mouse.

This class
paint()

eeds , or when
d repaint(). You’ve read it right,

 Java Programming for Kids, Parents and Grandparents 163

s width and height in pixels. The ball is painted using the method
illOval(), and it needs to know coordinates of the center of the
val, its height and width. When the height and width of the oval
re the same, it looks like a circle.

 coordinate in a window grows from left to right, and Y coordinate
creases from top to bottom. For example, the width of this

ectangle is 100 pixels, and the height is 70:
 X
 (0,0) (100,0)

 Y

 (0,70) (110,70)

 and Y coordinates of the corners of this rectangle are shown in
arentheses.

Another interesting method is getPreferredSize(). We create an
instance of a Swing class Dimension to set the size of the table.
JVM needs to know dimensions of the window, that’s why it calls
the method getPreferredSize() of the PingPongGreenTable
object. This method returns to JVM an object Dimension that
we’ve created in the code according to the size of our table.

Both table and engine classes use some constant values that do
not change. For example, class PingPongGreenTable uses the
width and height of the table, and PingPongGameEngine needs to
know ball movement increments – the smaller the increment, the
smoother the movement. It’s convenient to keep all the constants

 variables) in an int
terface is GameConstants. If a class needs these values, just add

implements GameConstants to the class declaration and use any
of the final variables from this interface as if they were declared
in the class itself! That’s why both table and engine classes
implement GameConstants interface.

If you decide to change the size of the table, ball, or racket you’ll
need to do it only in one place – in the GameConstants interface.
Let’s look at the code of the class PingPongGreenTable and the
interface GameConstants.

it
f
o
a

X
in
r

X
p

(final
in

erface. In our game the name of the

package screens;

import javax.swing.JPanel;
import javax.swing.JFrame;
import javax.swing.BoxLayout;
import javax.swing.JLabel;
import javax.swing.WindowConstants;
import java.awt.Point;
import java.awt.Dimension;
import java.awt.Container;
import java.awt.Graphics;
import java.awt.Color;
import engine.PingPongGameEngine;
/**
* This class paints a green ping pong table
* and displays coordinates of the point
* where the user clicked the mouse
*/
public class PingPongGreenTable extends JPanel
 implements GameConstants{
 JLabel label;
 public Point point = new Point(0,0);

 public int ComputerRacket_X =15;
 private int kidRacket_Y =KID_RACKET_Y_START;

 Dimension preferredSize = new
 Dimension(TABLE_WIDTH,TABLE_HEIGHT);

 // This method sets the size of the frame.
 // It's called by JVM
 public Dimension getPreferredSize() {
 return preferredSize;
 }

Class PingPongGreenTable (part 1 of 3)

 Java Programming for Kids, Parents and Grandparents 165 Java Programming for Kids, Parents and Grandparents 165

Class PingPongGreenTable (part 2 of 3)

 // Constructor. Creates a listener for mouse events
 PingPongGreenTable(){

 PingPongGameEngine gameEngine =
 new PingPongGameEngine(this);
 // Listen to mouse clicks to show its coordinates
 addMouseListener(gameEngine);
 // Listen to mouse movements to move the rackets
 addMouseMotionListener(gameEngine);
 }

 // Add a panel with a JLabel t
 void

o the frame
 addPaneltoFrame(Container container) {

d(label);

d by JVM

t(Graphics g) {

 container.setLayout(new BoxLayout(container,
 BoxLayout.Y_AXIS));
 container.add(this);
 label = new JLabel("Click to see coordinates");
 container.ad
 }

 // repaint the window. This method is calle
 // when it needs to refresh the screen or when a
 // method repaint() is called from PingPointGameEngine
 public void paintComponen

 super.paintComponent(g);

etColor(Color.GREEN);
 // paint the table green

g.s

 g.fillRect(0,0,TABLE_WIDTH,TABLE_HEIGHT);

 g.setColor(Color.yellow);

 // paint the right racket
 g.fillRect(KID_RACKET_X_START,kidRacket_Y,5,30);
 g.setColor(Color.blue);

 // paint the left racket
 g.fillRect(ComputerRacket_X,100,5,30);

 g.setColor(Color.red);
 g.fillOval(25,110,10,10); //paint the ball

 g.setColor(Color.white);
 g.drawRect(10,10,300,200);
 g.drawLine(160,10,160,210);

Class PingPongGreenTable (part 3 of 3)

 // Display a point as a small 2x2 pixels rectangle
 if (point != null) {
 label.setText("Coordinates (x,y): " +
 point.x + ", " + point.y);
 g.fillRect(point.x, point.y, 2, 2);
 }
 }

 // Set the current position of the kid's racket
 public void setKidRacket_Y(int xCoordinate){
 this.kidRacket_Y = xCoordinate;
 }

 // Return the current position of the kid's racket
 public int getKidRacket_Y(int xCoordinate){
 return kidRacket_Y;
 }

 public static void main(String[] args) {
 // Create an instance of the frame
 JFrame f = new JFrame("Ping Pong Green Table");
 // Ensure that the window can be closed
 // by pressing a little cross in the corner
 f.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);

 PingPongGreenTable table =
 new PingPongGreenTable();
 table.addPaneltoFrame(f.getContentPane());
 // Set the size and make the frame visible
 f.pack();
 f.setVisible(true);
 }
}

 Java Programming for Kids, Parents and Grandparents 167

A
b
d
v
G

D
w
M
m

The next is the interface GameConstants. All values of the
variables are in pixels. Use capital letters to name final variables:

s
A
s
M

A
p
p
r

T
o
k

A
r
th
th

W
to
r
P
e

package screens;

public interface GameConstants {
 public final int TABLE_WIDTH = 320;
 public final int TABLE_HEIGHT = 220;
 public final int KID_RACKET_Y_START = 100;
 public final int KID_RACKET_X_START = 300;
 public final int TABLE_TOP = 12;
 public final int TABLE_BOTTOM = 180;

 public final int RACKET_INCREMENT = 4;
}
 running program can not change vales of these variables,
ecause they were declared as final. But if, for example you
ecide to increase the size of the table, you’ll need to change the
alues of TABLE_WIDTH and TABLE_HEIGHT and then recompile the
ameConstants interface.

ecision-maker in this game is the class PingPongGameEngine,
hich implements two mouse-related interfaces. The
ouseListener will have code only in the method
ousePressed(). On every mouse click this method will draw a

hen constructor of the table creates the engine object, it passes
 the engine a reference to the table’s instance (the keyword this

ory cation of the object
ngine can “talk” to the table, for

ample set new coordinates of the ball or repaint the table if

mall white point on the table and display its coordinates.
ctually, this code is useless for our game, but it’ll show you in a
imple way how to get coordinates of the mouse from the
ouseEvent object that is given to the program by JVM.

 method mousePressed() sets the coordinates of the variable
oint depending on where the mouse poiner was when the player
ressed its button. After coordinates are set, it asks JVM to
epaint the table.

he MouseMotionListener reacts on movements of the mouse
ver the table, and we’ll use its method mouseMoved() to move the
id’s racket up or down.

 method mouseMoved() calculates the next position of the kid’s
acket. If the mouse pointer is above the racket (the Y coordinate of
e mouse is less then Y coordinate of the racket), it ensures that
e racket will not go over the top of the table.

epresents a reference to mem
ingPongGreenTable). Now the e

lo

x

 want to re-read a section
pter 6.

one position to another
defined in the int rface

cket_Y - RACKET_INCREMENT;

If you remember, we’ve talked about different ways of changing
variable values in Chapter 3.

The class PingPongGameEngine is next.

needed. If this part is not clear, you may
about passing data between classes in Cha

In our game rackets move vertically from
using four pixel increment as e
GameConstants (the engine class implements this interface). For
example, the next line subtracts four from the value of the variable
kidRacket_Y:

idRacket_Y -= RACKET_INCREMENT; k

For example, if the Y coordinate of the racket was 100, after this
line of code its value becomes 96, which means that the racket
has to be moved up. You can get the same result using the
following syntax:

kidRacket_Y = kidRa

 Java Programming for Kids, Parents and Grandparents 169

Java Threads Basics

So far, all our programs perform actions in a sequence – one after
another. If a program calls two methods, the second method waits
until the first one completes. In other words, each of our programs
has only one thread of execution.

package engine;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.event.MouseMotionListener;
import screens.*;
public class PingPongGameEngine implements
 MouseListener, MouseMotionListener, GameConstants{

 PingPongGreenTable table;
 public int kidRacket_Y = KID_RACKET_Y_START;
 // Constructor. Stores a reference to the table
 public PingPongGameEngine(PingPongGreenTable
 greenTable){
 table = greenTable;
 }
// Methods required by the MouseListener interface
 public void mousePressed(MouseEvent e) {
 // Get X and Y coordinates of the mouse pointer
 // and set it to the "white point" on the table
 table.point.x = e.getX();
 table.point.y = e.getY();
//The method repaint internally calls the table's
// method paintComponent() that refreshes the window
 table.repaint();
 }
 public void mouseReleased(MouseEvent e) {};
 public void mouseEntered(MouseEvent e) {};
 public void mouseExited(MouseEvent e) {};
 public void mouseClicked(MouseEvent e) {};

// Methods required by the MouseMotionListener interface
 public void mouseDragged(MouseEvent e) {}

 public void mouseMoved(MouseEvent e) {
 int mouse_Y = e.getY();
 // If a mouse is above the kid's racket
 // and the racket did not go over the table top
 // move it up, otherwise move it down
 if (mouse_Y < kidRacket_Y && kidRacket_Y > TABLE_TOP){
 kidRacket_Y -= RACKET_INCREMENT;
 }else if (kidRacket_Y < TABLE_BOTTOM) {
 kidRacket_Y += RACKET_INCREMENT;
 }
 // Set the new position of the racket table class
 table.setKidRacket_Y(kidRacket_Y);
 table.repaint();
 }
}

essors:
ands, eyes, and mouth.

In a real life though, we can do several things at the same time, for
example eat, talk on the phone, watch TV, and do the homework.
To do all these actions in parallel we use several proc
h

Some of the more expensive computers also have two or more
rocessors. But most likely your computer has only one processor
at performs calculations, sends commands to the monitor, disk,

emote computers, and so on.

ut even one processor can perform several actions at once if a
rogram uses multiple threads. One Java class can start several

A good example of a program that creates multiple threads is a
Web browser. You can browse the Internet while downloading some
files – one program runs two threads of execution.

The next version of our ping pong game will have one thread that
displays the table. The second thread will calculate coordinates of
the ball and rackets and will send commands to the first thread to
repaint the window. But first, I’ll show you two very simple
programs to give you a better feeling of why threads are needed.

Each of these sample programs will
display a button and a text field.

p
th
r

B
p
threads of execution that will take turns in getting slices of the
processor’s time.

 Java Programming for Kids, Parents and Grandparents 171

When you press the button Kill Time,
the program will start a loop that will
increment a variable thirty thousand
times. The current value of the
variable-counter will be displayed on
the title bar of the window. The class NoThreadsSample has only
one thread of execution, and you won’t be able to type anything in
the text field until the loop is done. This loop takes all processor’s
time, that’s why the window is locked.

Compile and run this class and see for yourself that the window
is locked for some time. Note that this class creates an instance
of JTextField and passes it to the content pane without declaring
a variable for this instance. If you are not planning to get or set
attributes of this object in this program, you do not need such
reference variable.

import javax.swing.*;
import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class NoThreadsSample extends JFrame

 // Create a frame with a button and a text field
2,1);
t(gl);
("Kill Time");

 myButton.addActionListener(this);

 implements ActionListener{
 // Constructor
 NoThreadsSample(){

 GridLayout gl =new GridLayout(
 this.getContentPane().setLayou
 JButton myButton = new JButton

 this.getContentPane().add(myButton);
 this.getContentPane().add(new JTextField());
 }
 // Process button clicks
 public void actionPerformed(ActionEvent e){
 // Just kill some time to show
 // that window controls are locked
 for (int i=0; i<30000;i++){
 this.setTitle("i="+i);
 }
 }

 public static void main(String[] args) {
 // Create an instance of the frame
 NoThreadsSample myWindow = new NoThreadsSample();

 myWindow.setVisible(true);

 // Ensure that the window can be closed
 // by pressing a little cross in its corner
 myWindow.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);

 // Set the frame's size – top left corner
 // coordinates, width and height
 myWindow.setBounds(0,0,150, 100);
 //Make the window visible

 }
}

 Java Programming for Kids, Parents and Grandparents 173

The next version of this little window will create and start a
separate thread for the loop, and the main window’s thread will
allow you to type in the text field while the loop is running.

You can create a thread in Java using one of the following ways:

1. Create an instance of the Java class Thread and pass to this
instance an object that implements Runnable interface. If your
class implements Runnable interface the code will look like this:

Thread worker = new Thread(this);

This interface requires you to write in the method run() the code
that must be running as a separate thread. But to start the thread,
you have to call the method start(), that will actually call your
method run(). I agree, it’s a bit confusing, but this is how you
start the thread:

worker.start();

2. Make a subclass of the class Thread and implement the
method run() there. To start the thread call the method start().

I’ll be using the first method in the class ThreadsSample because
this class already extends JFrame, and you can’t extend more than
one class in Java.

public class MyThread extends Thread{

 public static void main(String[] args) {
 MyThread worker = new MyThread();
 worker.start();
 }
 public void run(){
 // your code goes here
 }
}

import javax.swing.*;
import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class ThreadsSample extends JFrame
 implements ActionListener, Runnable{

 // Constructor
 ThreadsSample(){
 // Create a frame with a button and a text field
 GridLayout gl =new GridLayout(2,1);
 this.getContentPane().setLayout(gl);
 JButton myButton = new JButton("Kill Time");
 myButton.addActionListener(this);
 this.getContentPane().add(myButton);
 this.getContentPane().add(new JTextField());
 }

 public void actionPerformed(ActionEvent e){
 // Create a thread and execute the kill-time-code
 // without blockiing the window
 Thread worker = new Thread(this);
 worker.start(); // this calls the method run()
 }

 public void run(){
 // Just kill some time to show that
 // window controls are NOT locked
 for (int i=0; i<30000;i++){
 this.setTitle("i="+i);
 }
 }

 public static void main(String[] args) {

 ThreadsSample myWindow = new ThreadsSample();
 // Ensure that the window can be closed
 // by pressing a little cross in the corner
 myWindow.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);

 // Set the frame's size and make it visible
 myWindow.setBounds(0,0,150, 100);
 myWindow.setVisible(true);
 }
}

 Java Programming for Kids, Parents and Grandparents 175

Class ThreadsSample starts a new thread when you click on the
button Kill Time. After this, the thread with a loop and the main
thread take turn in getting slices of the processor’s time. Now you
can type in the text field (the main thread), while the other thread
runs the loop!

Threads deserve much better study that these couple of pages, and
I encourage you to do some additional reading on this topic.

Finishing Ping Pong Game

After a brief introduction of threads, we are ready to modify the
code of our ping pong game classes.

Let’s start with the class PingPongGreenTable. We do not need to
display a white point when the user clicks the mouse – this was
just an exercise to learn how to display coordinates of the mouse
pointer. That’s why we’ll remove the declaration of the variable
point and the lines that paint the white point from the method
paintComponent(). Also, constructor does not need to add
MouseListener anymore, because it only displays the point’s
coordinates.

On the other hand, this class should react to some of the keyboard
buttons (N for new game, S for serving the ball, and Q to quit the
game). The method addKeyListener() will take care of this.

To make our code a little more encapsulated, I’ve also moved the
repaint() calls from the engine class to PingPongGreenTable.
Now this will be responsible for repainting itself when needed.

I’ve also added methods to change positions of the ball, computer’s
racket and to display messages.

Class PingPongGreenTable (part 1 of 3)

package screens;

import javax.swing.JPanel;
import javax.swing.JFrame;
import javax.swing.BoxLayout;
import javax.swing.JLabel;
import javax.swing.WindowConstants;
import java.awt.Dimension;
import java.awt.Container;
import java.awt.Graphics;
import java.awt.Color;
import engine.PingPongGameEngine;
/**
* This class paints the green ping pong table,
* ball, rackets and displays the score
*/
public class PingPongGreenTable extends JPanel
 implements GameConstants{
 private JLabel label;

 private int computerRacket_Y =
 COMPUTER_RACKET_Y_START;
 private int kidRacket_Y = KID_RACKET_Y_START;
 private int ballX = BALL_START_X;
 private int ballY = BALL_START_Y;

 Dimension preferredSize = new
 Dimension(TABLE_WIDTH,TABLE_HEIGHT);

 // This method sets the size of the frame.
 // It's called by JVM
 public Dimension getPreferredSize() {
 return preferredSize;
 }

 // Constructor. Creates a listener for mouse events
 PingPongGreenTable(){

 PingPongGameEngine gameEngine =
 new PingPongGameEngine(this);
 // Listen to mouse movements to move the rackets
 addMouseMotionListener(gameEngine);
 //Listen to the keyboard events
 addKeyListener(gameEngine);
 }

 Java Programming for Kids, Parents and Grandparents 177

 Java Programming for Kids, Parents and Grandparents 177

Class PingPongGreenTable (part 2 of 3)

 // A
 void
 c
 BoxLayout.Y_AXIS));

 c
 }

 /
 // w
 // m
 publ

 s

 /
 g

 g
 /

 g
 /
 g

 /
 g.setColor(Color.red);

 /
 g
 g
 g.drawLine(160,10,160,210);
 // Set the focus to the table, so the key
 // listenerwill send commands to the table
 requestFocus();
 }

 // Set the current position of the kid's racket
 public void setKidRacket_Y(int yCoordinate){
 this.kidRacket_Y = yCoordinate;

dd a panel with a JLabel to the frame
 addPaneltoFrame(Container container) {
ontainer.setLayout(new BoxLayout(container,

 container.add(this);
 label = new JLabel(

 "Press N for a new game, S to serve or Q to quit");
ontainer.add(label);

/ repaint the window. This method is called by JVM
hen it needs to refresh the screen or when a
ethod repaint() is called from PingPointGameEngine
ic void paintComponent(Graphics g) {

uper.paintComponent(g);

 g.setColor(Color.GREEN);
/ paint the table green
.fillRect(0,0,TABLE_WIDTH,TABLE_HEIGHT);

.setColor(Color.yellow);
/ paint the right racket

 g.fillRect(KID_RACKET_X, kidRacket_Y,
 RACKET_WIDTH, RACKET_LENGTH);

.setColor(Color.blue);
/ paint the left racket
.fillRect(COMPUTER_RACKET_X, computerRacket_Y,
 RACKET_WIDTH,RACKET_LENGTH);
/ paint the ball

 g.fillOval(ballX,ballY,10,10);
/draw the white lines
.setColor(Color.white);
.drawRect(10,10,300,200);

 repaint();
 }

 // Return current posiition of the kid's racket
 public int getKidRacket_Y(){
 return kidRacket_Y;
 }

// Set the current position of the computer's racket
 public void setComputerRacket_Y(int yCoordinate){
 this.computerRacket_Y = yCoordinate;
 repaint();
 }

 // Set the game's message
 public void setMessageText(String text){
 label.setText(text);
 repaint();
 }

 // Set the game's message
 public void setBallPosition(int xPos, int yPos){
 ballX=xPos;
 ballY=yPos;
 repaint();
 }

 public static void main(String[] args) {

 // Create an instance of the frame
 JFrame f = new JFrame("Ping Pong Green Table");

 // Ensure that the window can be closed
 // by pressing a little cross in the corner
 f.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
 PingPongGreenTable table = new PingPongGreenTable();
 table.addPaneltoFrame(f.getContentPane());

 // Set the frame's size and make it visible
 f.setBounds(0,0,TABLE_WIDTH+5, TABLE_HEIGHT+40);
 f.setVisible(true);
 }
}

Class PingPongGreenTable (part 3 of 3)

 Java Programming for Kids, Parents and Grandparents 179

I’ve added some more final variables to the interface
ameConstants, and you should be able to guess what they are for
st by looking at the variable names.

Below are the highlights of the changes I’ve made in the class
PingPongGameEngine:

9 I have removed the interface MouseListener and all its

methods, because we’re not processing mouse clicks
anymore. MouseMotionListener will take care of all mouse
movements.

9 This class now implements Runnable interface, and you can
find decision-making code in the method run(). Look at the
constructor – I create and start a new thread there. The
method run() applies game strategy rules in several steps,

G
ju

package screens;
/**
 * This interface contains all definitions of the
 * final variables that are used in the game
 */
public interface GameConstants {
 // Size of the ping pong table
 public final int TABLE_WIDTH = 320;
 public final int TABLE_HEIGHT = 220;
 public final int TABLE_TOP = 12;
 public final int TABLE_BOTTOM = 180;

 // Ball movement increment in pixels
 public final int BALL_INCREMENT = 4;

 // Maximum and minimum allowed ball coordinates
 public final int BALL_MIN_X = 1+ BALL_INCREMENT;
 public final int BALL_MIN_Y = 1 + BALL_INCREMENT;
 public final int BALL_MAX_X =
 TABLE_WIDTH - BALL_INCREMENT;
 public final int BALL_MAX_Y =
 TABLE_HEIGHT - BALL_INCREMENT;

 // Starting coordinates of the ball
 public final int BALL_START_X = TABLE_WIDTH/2;
 public final int BALL_START_Y = TABLE_HEIGHT/2;

 //Rackets' sizes, positions and movement increments
 public final int KID_RACKET_X = 300;
 public final int KID_RACKET_Y_START = 100;
 public final int COMPUTER_RACKET_X = 15;
 public final int COMPUTER_RACKET_Y_START = 100;
 public final int RACKET_INCREMENT = 2;
 public final int RACKET_LENGTH = 30;
 public final int RACKET_WIDTH = 5;

 public final int WINNING_SCORE = 21;

//Slow down fast computers - change the value if needed
 public final int SLEEP_TIME = 10; //time in miliseconds

}

and all these steps are programmed inside the if statement
if(ballServed). It’s a short version of
if(ballServed==true).

9 Please note the use of conditional if statement that assigns
a value to the variable canBounce in step 1. Depending on
the highlighted expression, this variable will get the value of
either true, or false.

9 The class implements KeyListener interface, and the
method keyPressed() checks what letter was keyed in to
start/quit the game, or to serve the ball. The code of this
method allows the user to type both capital and small
letters, for example N and n.

9 I’ve added several private methods like displayScore(),
kidServe() and isBallOnTheTable(). These methods are
declared private because they are used within this class
only, and other classes do not even have to know about
them. This is an example of encapsulation in action.

9 Some computers are too fast, and this makes the ball
movements difficult to control. That’s why I’ve slowed the
game down by calling a method Thread.sleep(). A static
method sleep() will pause this particular thread for a
number of milliseconds given as an argument of this
method.

9 To add a little fun to the game, when the kid’s racket hits the
ball it moves diagonally. That’s why code changes not only
the X coordinate of the ball, but Y as well.

 Java Programming for Kids, Parents and Grandparents 181

package engine;

import java.awt.event.MouseMotionListener;
import java.awt.event.MouseEvent;
import java.awt.event.KeyListener;
import java.awt.event.KeyEvent;
import screens.*;
/**
 * This class is a mouse and keyboard listener.
 * It calculates ball and racket movements,
 * changes their coordinates.
 */
public class PingPongGameEngine implements Runnable,
 MouseMotionListener, KeyListener, GameConstants{

 private PingPongGreenTable table;//reference to table
 private int kidRacket_Y = KID_RACKET_Y_START;
 private int computerRacket_Y=COMPUTER_RACKET_Y_START;
 private int kidScore;
 private int computerScore;
 private int ballX; // ball's X position
 private int ballY; // ball's Y position
 private boolean movingLeft = true;
 private boolean ballServed = false;

 //Value in pixels of the vertical ball movement
 private int verticalSlide;

 // Constructor. Stores a reference to the table
 public PingPongGameEngine(
 PingPongGreenTable greenTable){
 table = greenTable;
 Thread worker = new Thread(this);
 worker.start();
 }
 // Methods required by MouseMotionListener
 // interface (some of them are empty, but must be
 // included in the class anyway)

 public void mouseDragged(MouseEvent e) {
 }

Class PingPongGameEngine (part 1 of 5)

Class PingPongGameEngine (part 2 of 5)

 public void mouseMoved(MouseEvent e) {

 int mouse_Y = e.getY();

 // If a mouse is above the kid's racket
 // and the racket did not go over the table top
 // move it up, otherwise move it down
 if (mouse_Y<kidRacket_Y && kidRacket_Y>TABLE_TOP){
 kidRacket_Y -= RACKET_INCREMENT;
 }else if (kidRacket_Y < TABLE_BOTTOM) {
 kidRacket_Y += RACKET_INCREMENT;
 }

 // Set the new position of the racket on the table
 table.setKidRacket_Y(kidRacket_Y);
 }

 // Methods required by KeyListener interface
 public void keyPressed(KeyEvent e){
 char key = e.getKeyChar();
 if ('n' == key || 'N' == key){
 startNewGame();
 } else if ('q' == key || 'Q' == key){
 endGame();
 } else if ('s' == key || 'S' == key){
 kidServe();
 }
 }

 public void keyReleased(

 table.setMessageText("Score Computer: 0 Kid: 0");

KeyEvent e){}

 public void keyTyped(KeyEvent e){}

 // Start a new Game
 public void startNewGame(){
 computerScore=0;
 kidScore=0;

 kidServe();
 }

 // End the game
 public void endGame(){
 System.exit(0);
 }

 Java Programming for Kids, Parents and Grandparents 183

PongGameEngine (part 3 of 5)

 // Method run() is required by Runnable interface

while (true) {

 if(ballServed){

 //Step 1. Is ba
 if (movingLeft
 canBounce = (ballY >= computerRacket_Y &&

Class Ping

 public void run(){

boolean canBounce=false;

// if ball is moving

ll moving o the left?
 && ballX > BALL_MIN_X){

 ballY < (computerRacket_Y + RACKET_LENGTH)?
 true: false);
 ballX-=BALL_I

 // Add up or down slide to any left/right ball
 // movement
 ballY-=verticalSlide;

tBallPosition(ballX,ballY);
// Can bounce?

 if (ballX <= COMPUTER_RACKET_X && canBounce){
 movingLeft=

 }

 // Step 2. Is b
 if (!movingLef
 canBounce = (ballY >= kidRacket_Y && ballY <
 (kidRa

 ballX+=BALL_
 table.setBallPosition(ballX,ballY);
 // Can bounc
 if (ballX >=
 movingLef
 }
 }

 // Step 3. Move
 // to b

NCREMENT;

 table.se

 false;
 }

all moving to the right?
t && ballX <= BALL_MAX_X){

ket_Y + RACKET_LENGTH)?true:false);

INCREMENT;

e?
KID_RACKET_X && canBounce){

c

t=true;

 computer's racket up or down
lock the ball

 if (computerRacket_Y < ballY

 computerRa
 }else if (comp
 computerRa
 }
 table.setCompu

 // Step 4. Sle
 try {

 && computerRacket_Y < TABLE_BOTTOM){
cket_Y +=RACKET_INCREMENT;
uterRacket_Y > TABLE_TOP){
cket_Y -=RACKET_INCREMENT;

terRacket_Y(computerRacket_Y);

ep a little

 Thread.sleep(SLEEP_TIME);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 // Step 5. Update the score if the ball is in the
 // green area but is not moving
 if (isBallOnTheTable()){
 if (ballX > BALL_MAX_X){
 computerScore++;
 displayScore();
 }else if (ballX < BALL_MIN_X){
 kidScore++;
 displayScore();
 }
 }
 } // End if ballServed
 } // End while
 }// End run()

// Serve from the current position of the kid's racket
 private void kidServe(){

 ballServed = true;
 ballX = KID_RACKET_X-1;
 ballY=kidRacket_Y;

 if (ballY > TABLE_HEIGHT/2){
 verticalSlide=-1;
 }else{
 verticalSlide=1;
 }

 table.setBallPosition(ballX,ballY);
 table.setKidRacket_Y(kidRacket_Y);
 }

Class PingPongGameEngine (part 4 of 5)

 Java Programming for Kids, Parents and Grandparents 185

gPongGameEngine (part 5 of 5)

ongratulations! You’ve completed your second game. Compile the
ou feel more comfortable with
you’ll have some ideas of how

hat to Read Next on Game Programming

sored Java-based, real-time
lipse platform. It allows users

ith Java to easily compete while they learn the Java
language. Players develop a rally car and make decisions about

hen to speed up, turn, or slow down based on the location of
ther players or checkpoints, their current fuel level, and other

Class Pin

C
classes and play the game. After y
the code, try to modify it – I’m sure
to make this game better.

W

1. CodeRally is an IBM spon
programming game based on the Ec
unfamiliar w

w
o
factors.

http://www.alphaworks.ibm.com/tech/codeRally

2. Robocode is a fun programming game that teaches Java by
letting you create Java Robots.

http://www.alphaworks.ibm.com/tech/robocode

 private void displayScore(){
 ballSer

 (com
 table.setMessageText("Computer won! " +

":" + kidScore);
else if (kidScore ==WINNING_SCORE){

"You won! "+ kidScore +
":" + computerScore);

else{
"Computer: "+ computerScore

 + " Kid: " + kidScore);

 if ball did not cross the top or bottom

 ved = false;

puterScore ==WINNING_SCORE){ if

 computerScore +
 }
 table.setMessageText(

 }
 table.setMessageText(

 }
 }

// checks
 // borders of the table
 private boolean isBallOnTheTable(){
 if (ballY >= BALL_MIN_Y && ballY <= BALL_MAX_Y){
 return true;
 }else {
 return false;
 }
 }
}

dditional Reading

A

Java Threads Tutorial:
http://java.sun.com/docs/books/tutorial/essential/threads/

Introduct
http://www-1

ion to Java Threads:
06.ibm.com/developerworks/edu/j-dw-

javathread-i.html

Class java.awt.Graphics:
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Graphics.html

Practice

1. The class PingPongGameEngine sets

the coordinates of the white point using
the code like this:
 table.point.x = e.getX();.

In the class PingPongGreenTable make
the variable point private and add a
public method

Coordinates(int x, int y).

the engine class to use

2. Our ping pong game has a bug: after a
winner is announced, you can still press
the key S on the keyboard and the game
will continue. Fix this bug.

Practice for Smarty Pants

setPoint

Change the code of
this method.

1. Try to change the values of the
RACKET_INCREMENT and
BALL_INCREMENT. Higher values
increase the speed of racket and ball
movements. Change the code to allow
selection of the player’s level from 1 to 10.
Use selected values as ball and racket

 Java Programming for Kids, Parents and Grandparents 187

increments.

s the ball
in the top part of the table, the ball moves
diagonally an upward and quickly falls off
the table. Modify the program to move the
ball diagonally down from the top part of
the table, and diagonally up from the
bottom part.

2. When the kid’s racket bounce

Appendix A. Java Archives - JARs

omputer users pretty often need to exchange files. They

smaller than combined sizes of
each file, and this makes copying
faster and also saves space on
your disks.

Java comes with a program called
jar that is used to archive
multiple Java classes and other
files into a file having the name
extension .jar.

Internal format of jar files is the
same as in a popular program
called WinZip (we used it in
Chapter 2).

C
could either copy files on floppy disks, CD, use e-mail, or just
send the data across the network. There are special programs that
can compress multiple files into a single archive file .

The size of such archive is usually

he following tree commands illustrate the use of the jar tool:

.class
pen this black command window, get into the folder where your

T

To create a jar that will contain all files with extension ,
o
classes are, and type the following command:

jar cvf myClasses.jar *.class

 Java Programming for Kids, Parents and Grandparents 189

 file name of
e new arc ed.

 files from the archive
yClasses.jar, type the following command:

ar xvf myClasses.jar

All files will be extracted into the current directory. In this example
the option x is for extracting files from the archive.

If you just want to see the content of the jar without extracting the
files, use the next command where t is for tables of contents:

jar tvf myClasses.jar

Actually, I prefer using the program WinZip to see what’s in the
jar file.

In many cases real-world Java applications consist of multiple
classes that live in jars. Even though there are many other options
that could be used with the jar program, three examples from this
chapter is all you need to know for most of your future projects.

dditional Reading

After the word jar you have to specify the options for this
command. In the last example c is for creating a new archive, v is
for displaying what goes in there, and f means that the

hive is providth

Now you can copy this file to another disk or email it to your
friend. To unjar (extract) the
m

j

A

Java Archive Tool:
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html

Appendix B. Eclipse Tips

Eclipse has many little convenient commands that make

Java programming a little faster. I’ve listed some of the useful
Eclipse tips here, but I’m sure you’ll find more of them when you
start using this tool.

9 If you see a little asterisk in the tab with the class, this

means that the class has some unsaved code changes.

in
ton F3 on your keyboard. This

will take you to the line where this class or method was

9 If some of the lines are marked with red error circles, move

9 Place the cursor after a curly brace and Eclipse will mark the

 on
elete the class java.lang.Object and

enter the first letter of the class you’d like to use. You’ll see a
list of available classes to choose from.

9 To copy a class from one package to another, select the class

and press Ctrl-C. Select the destination package and press
Ctrl-V.

9 To rename a class, a variable or a method, right-click on it

and select Refactor and Rename from the popup menu. This
will rename every occurrence of this name.

9 Highlight the name of the class or a method that is used
your code and press the but

declared.

the mouse over the circle to see the error text.

9 Press Ctrl-F11 to run the last-launched program again.

matching brace.

9 To change the superclass when creating a new class, click

the button Browse, d

 Java Programming for Kids, Parents and Grandparents 191

9

clipse Debugger

he rumor has it, that about 40 years ago, when computers were
rge and would not even fit in your room, all of a sudden one of
e programs started giving wrong results. All these troubles were

aused by a small bug that was sitting inside the computer
omewhere in the wires. When people removed the bug, the

am started working properly again. Since then, to debug a
am means to find out why it does not give the expected
ts.

ad of multiplying the variable by 2, you’ll multiply it by 22.

If your project needs some external jars, right-click on the
project name, select Properties, Java Build Path and press
the button Add External Jars.

E

T
la
th
c
s
progr
progr
resul

Do not confuse bugs with the compilation errors. Say for example,
inste
This typo will not generate any compilation errors, but the result
will be incorrect. Debuggers allow you to step through a running
program one line at a time, and you can see and change values of
all variables at each point of the program execution.

I’ll show you how to use Eclipse debugger using the FishMaster
progra

A bre
pause so you can see/change current values of the variables, and
some other run-time information. To set a breakpoint just double
click on ft of the line where you want a
rogram to stop. Let’s do it in the FishMaster class on the line

m from Chapter 4.

akpoint is a line in the code where you’d like program to

the gray area to the le
p

myFish.dive(2). You’ll see a round bullet on this line which is a
breakpoint. Now, select the menus Run, Debug…. Select the
application FishMaster and press the button Debug.

FishMaster will start running in the debug mode, and as soon as
the program reaches the line myFish.dive(2), it will stop and will
wait for your further instructions.

You will see a window similar to the next one.

In the left bottom part of the debug perspective, you see that the
line with the breakpoint is highlighted. The blue arrow points at
the line that is about to be executed. On the right side (in the
Variables view) click on the little plus sign by the variable myFish.

ince this variable points at the object Fish, you will see all
ember variables of this class and their current values, for

e word this to see what are the

S
m
example currentDepth=20.

The arrows in the top left area allow you to continue execution of
the program in different modes. The first yellow arrow means step
into the method. If you press this arrow (or F5), you’ll find yourself
inside the method dive(). The window changes and you see the
values of the argument howDeep=2 as in the next screenshot.

lick on the little plus by thC
current values of member variables of this object.

To change the value of the variable, right-click on the variable and
enter the new value. This can help when you are not sure why the

 Java Programming for Kids, Parents and Grandparents 193

program does not work correctly and would like to play what if
game.

To continue execution one line at a time, keep pressing the next
arrow step over (or the button F6).

If you want to continue program in the fast mode, press a small
green triangle or the button F8.

To remove the breakpoint just double-click on the little round
bullet and it’ll disappear. I like using debugger even if my program
does not have a bug – it helps me better understand what exactly
happens inside the running program.

Where to put a breakpoint? If you have an idea which method gives
you problems, put it right before suspicious line. If you are not
sure, just put in the first line of the method main() and slowly

alk through the program.w

 to Publish a Web Page

nternet pages files, etc.

HTML was briefly re planning
to become a Web designer, you should spend more time learning
HTML, and one of the good places to start is a Web page
www.w3chools.com

Appendix C. How

I consist of HTML files, images, sound

 mentioned in Chapter 7, but if you a

. Actually, there are many Web sites and
rograms that allow you create a Web page in a several minutes
ithout even knowing how it’s being done. These programs will
enerate HTML anyway, but they just hide this from you. But if
ou’ve mastered this book, I declare you a Junior Java
rogrammer (I’m not kidding!), and learning HTML for you is a

piece of cake.

To develop a Web page, you usually create one or more HTML files
on your computer’s disk, but the problem is that your computer
is not visible to other Internet users. That's why, when the page is
finished, you need to copy (upload) these files to a place that
everybody can see. Such place is a disk located in the computer of
the company that is your Internet Service Provider (ISP).

First of all, you need to have your own folder on your ISP's
computer. Contact your ISP by phone or e-mail, saying that you
created an HTML page and want to publish it. They will usually
respond with the following information:

• The network name of their computer (host machine).
• Name of the folder on their computer where they allow

you to keep your files.
• A Web address (URL) of your new page - you will be giving

it to anyone who is interested in seeing your page.
• The user id and the password that you’ll need to upload

new or modify old files.

p
w
g
y
P

 Java Programming for Kids, Parents and Grandparents 195

These days, most of the ISP's you at least 10MB of space
on their disk for free, which is more than enough for most of

 that w m
s compu r
s comp d
ternet d

ad or d d

to use F d
w.ftpx.c

 will give

people.

Now you will need a program ill allow you to copy files fro
your machine to your ISP' ter. Copying files from you
machine onto the Internet’ uter is called uploading, an
copying files from the In to your machine is calle
downloading. You can uplo ownload files using so-calle
FTP client program.

One of the simple and easy TP clients is FTP Explorer an
you can download it from ww om. Install this program and

nnection list of your FTP client - start
indow y n.
nnection

add your ISP machine to co
FTP Explorer and the first w ou see is a connection scree
You can also click on the Co item in the Tools menu.

Press the button Add, and enter e

m your of
 field. I u
n profi P
nect an r

der over g
t.

rows. T
 and yo w
nto the s.
e plann e

 the ost, login id and thh
passwo d that you've got fro

Profile Name
r ISP. Just type in the name

your ISP in the
will see your new connectio

f you did everything right, yo
le in the list of available FT

servers. Press the button Con d you’ll see the folders on you
lISP's machine. Find your fol there and start the up oadin

process that is described nex

The toolbar has two blue ar he arrow that points up is for

ndard windouploading. Press this arrow, u will see a sta
 folder with your HTML filethat will allow you to get i

Select the files that you ar ing to upload and press th

econds r button Open. In a couple of s you will see these files on you
ISP's machine.

Pay attention to the bottom part of this window to make sure that
there were no problems during uploading.
Name the main file of your page index.html. This way your URL
will be shorter and people will not need to type the file name at the
end of your URL. For example, if the name of the folder in the ISP
disk is www.xyz.com/~David, and the main file of your Web page is
myMainPage.html, the address of your Web page would be
www.xyz.com/~David/myMainPage.html. But if the name of the
main page is index.html, the URL of your page is shorter –
www.xyz.com/~David. From now on, everyone who knows this
URL, will be able to see your page online. If, later on, you decide to
modify this Web page, you will repeat the same process again -
make corrections on your disk, and after that just upload it, to
replace the old files with the new ones.

If you decide to become a Web designer, the next language to learn
is JavaScript. This language is a lot simpler than Java and will
allow you to make your Web pages fancier.

 Java Programming for Kids, Parents and Grandparents 197

Additional Reading

1. Webmonkey for Kids:
Hhttp://hotwired.lycos.com/webmonkey/kids/H

2.The World Wide Web
Hhttp://www.w3schools.com/html/html_www.asp H

Practice

Create a Web page and publish the Tic-
Tac-Toe game from Chapter 7. To start,
just upload to your Web page files
TicTacToe.html and TicTacToe.class.

The End

Index
!43
&&..................................43
||..................................43
==..................................52
Access Levels...............145
Adapters........................90
algorithm.......................99
applet 92, 96, 97
argument........... 19, 31, 35
arguments31
array 49, 50, 51
ArrayList... 154, 155, 156
arrays..........................151
attributes24, 28
AWT55
BorderLayout.................62
break52
Buffered Streams.........127
BufferedInputStream 127
BufferedOutputStream129
CardLayout....................68
Casting..........................79
catch 115, 117
class..............................22
CLASSPATH5
command-line arguments129,

131
comments......................40
concatenation................26
conditional if44
constants27
constructor....................48
continue52
Data Types25
date.............................139
debug191
debugger88
Eclipse11
else if44
encapsulation..............152
events................ 57, 74, 79
Exception...................114
extends33, 36
File135
FileDialog.................138
FileInputStream125
FileOutputStream126

FileReader 132
FileWriter 132
final............................ 27
finally 118, 119
for................................ 51
frame 56
FTP 195
Graphics 162
GridBagLayout 66
GridLayout 60
GUI 71
HTML................ 92, 93, 95
IDE 11
if statement............... 41
implement 75
import 56
inheritance.................... 33
input stream 124
installation...................... 2
instance 81
instance variables.......... 47
instanceof 81
interfaces 74, 76, 89, 167,

179
Interfaces 75
ISP 194, 196
jar 188, 189
Java Threads............... 169
Javadoc 40
JRE................................. 9
JVM 1
layout manager 57, 59
Layout manager 57
Layout Manager 62
listeners 74, 77, 78
Logical Operators 43
Loops 51
Math.............................. 47
member variable............ 47
message box.................. 78
method.......................... 22
method overloading 140
Method Overriding......... 37
method signature 17
methods 29
MouseListener........... 167
MouseMotionListener 167

new................................47
Object............................83
object-oriented style.......22
output stream..............124
override37
packages 55, 145, 146, 147
panel57
Path5
primitive..................26, 27
primitive data types26
private................. 148, 149
protected148
public 18, 148
scope.............................47
Scrapbook26
source code7
stack trace...................113
static18, 47

String 27, 43
subclass........................ 33
superclass............... 33, 36
Swing 55, 56, 160
switch 45
SWT 55
system variables.............. 4
this.............................. 48
throw.......................... 119
throws 117
time 139
try...................... 115, 117
try/catch block 114
void.............................. 18
Web page publishing ... 194
while............................ 53
WinZip 12, 189

	Preface
	Acknowledgements
	Chapter 1. Your First Java Program
	How to Install Java on Your Computer
	Three Main Steps in Programming
	Step 1 – Type the Program
	Step 2 – Compile the Program
	Step 3 – Run the Program

	Additional Reading

	Chapter 2. Moving to Eclipse
	Installing Eclipse
	Getting Started with Eclipse
	Creating Programs in Eclipse
	Running HelloWorld in Eclipse
	How HelloWorld Works?
	Additional Reading
	Practice
	�

	Chapter 3. Pet and Fish – Java Classes
	Classes and Objects
	Data Types
	Creation of a Pet
	Inheritance – a Fish is Also a Pet
	Method Overriding
	Additional Reading
	Practice
	Practice for Smarty Pants

	Chapter 4. Java Building Blocks
	Program Comments
	Making Decisions with if Statements
	Logical Operators
	The logical not here is applied to the expression in parenth
	Conditional operator
	Using else if
	Making Decisions With switch Statement
	How Long Variables Live?
	Special Methods: Constructors
	The Keyword this
	Arrays
	Repeating Actions with Loops
	Additional Reading
	Practice
	Practice for Smarty Pants

	Chapter 5. A Graphical Calculator
	AWT and Swing
	Packages and Import Statements
	Major Swing Elements
	Layout Managers
	Flow Layout
	Grid Layout
	Border Layout
	Combining Layout Managers
	Box Layout
	Grid Bag Layout
	Card Layout
	Can I Create Windows Without Using Layouts?

	Window Components
	Additional Reading
	Practice
	Practice for Smarty Pants

	Chapter 6. Window Events
	Interfaces
	Action Listener
	Registering Components with ActionListeneter
	What’s the Source of an Event?
	Casting

	How to Pass Data Between Classes
	Finishing Calculator
	Some Other Event Listeners

	How to Use Adapters
	Additional Reading
	Practice
	Practice for Smarty Pants

	Chapter 7. The Tic-Tac-Toe Applet
	Learning HTML in 15 Minutes
	Writing Applets Using AWT
	How to Write AWT Applets
	Writing a Tic-Tac-Toe Game
	The Strategy
	The Code

	Additional Reading
	Practice
	Practice for Smarty Pants

	Chapter 8. Program Errors - Exceptions
	Reading the Stack Trace
	Genealogical Tree of Exceptions
	The keyword throws
	The Keyword finally
	The Keyword throw
	Creating New Exceptions
	Additional Reading
	Practice
	Practice for Smarty Pants

	Chapter 9. Saving the Game Score
	Byte Streams
	Buffered Streams
	Command-Line Arguments
	Reading Text Files
	Class File
	Additional Reading
	Practice
	Practice for Smarty Pants

	Chapter 10. More Java Building Blocks
	Working with Date and Time Values
	Method Overloading
	Reading Keyboard Input
	More on Java Packages
	Access Levels
	Getting Back to Arrays
	Class ArrayList
	Additional Reading
	Practice
	Practice for Smarty Pants

	Chapter 11. Back to Graphics – the Ping Pong Game
	The Strategy
	The Code
	Java Threads Basics
	Finishing Ping Pong Game
	What to Read Next on Game Programming
	Additional Reading
	Practice
	Practice for Smarty Pants

	Appendix A. Java Archives - JARs
	Additional Reading

	Appendix B. Eclipse Tips
	Eclipse Debugger

	Appendix C. How to Publish a Web Page
	Additional Reading
	Practice

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

